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and teaching me that no academic achievement is worth more than my mental health. 

Finally, I would like to thank everyone who, directly or indirectly, helped me achieve this 

feat. 

Köszönöm, Magyarország!  



 
 

 

 

 

 

 

 

 

 

 

 

 

“Não podemos pensar em desenvolvimento econômico, reduzir as desigualdades 

sociais, e em qualidade de vida sem discutirmos meio ambiente”. 

 

-- Carlos Moraes Queiroz  



 
 

 

Table of Contents 

 

1. Chapter 1: Introduction ......................................................................................... 1 

1.1. Research Problem and Questions .......................................................................... 1 

1.2 Research Motivations and Relevance ..................................................................... 5 

1.3. Structure of the Doctoral Dissertation ................................................................... 6 

2. Chapter 2: Literature Review: Agricultural Frontiers and Environment in 

Emerging Countries ....................................................................................................... 8 

2.1 The Systematic Literature Review Methodology ................................................... 9 

2.2 Geographical Distribution and Key Terms of Studies ........................................... 11 

2.3 Key Studies by Country/Region ........................................................................... 13 

2.4 The Connections between Agricultural Frontiers and the Environment ............... 19 

2.4.1 Extended Industrial Agriculture Focus ........................................................... 19 

2.4.2 Socio-Economic-Ecological Focus ................................................................ 22 

2.5 Research Agenda ................................................................................................... 25 

3. Chapter 3: Matopiba: Brazil's Newest Agricultural Frontier .......................... 28 

3.1 Developmental Aspects ......................................................................................... 28 

3.2 Environmental Aspects ......................................................................................... 36 

4. Chapter 4: Verification of Environmental Conditions in Matopiba ................ 43 

4.1 The Machine Learning Method ............................................................................ 43 

4.2 Results of the Canonical Correlation Analysis ..................................................... 49 

4.2.1 CCA Between Environmental Impacts and Economic Growth ..................... 50 

4.2.2 CCA Between Environmental Impacts and Agricultural Production ............. 52 

5. Chapter 5: System Dynamics Modeling applied to predict the future of 

Matopiba ....................................................................................................................... 55 

5.1 The System Dynamics Modeling Methodology ................................................... 55 

5.2 Development of the SDM Concept for Matopiba ................................................. 58 

5.3 Results of the System Dynamics Modeling for the Matopiba Region ................. 63 

6. Chapter 6: Theses of the Doctoral Dissertation ................................................. 84 

6.1. Theses .................................................................................................................. 84 

6.2 New and Novel Results ......................................................................................... 88 

6.3. Study Limitations and Future Research ............................................................... 88 

References ...................................................................................................................... 90 

Appendices .................................................................................................................. 105 



 
 

Appendix A ............................................................................................................... 105 

Appendix B ................................................................................................................ 114 

Appendix C ................................................................................................................ 119 

Appendix D ............................................................................................................... 128 

 

  



 
 

List of Tables 

 

Table 1: Reputable articles on Agricultural Frontiers and the Environment from 2013 to 

2022 ................................................................................................................................ 16 

Table 2: Variables that make up Models 1 and 2 of the CCA ........................................ 47 

Table 3: Eigenvalues and Canonical Correlations of Model 1 ....................................... 50 

Table 4: CCA between Environmental Impacts and Economic Growth ........................ 51 

Table 5: Eigenvalues and Canonical Correlations of Model 2 ....................................... 52 

Table 6: CCA Between Environmental Impacts and Agricultural Production ............... 53 

Table 7: Initial Values of Model Elements (stocks and parameters) .............................. 64 

Table 8: Average difference between real and simulated values (SDM Calibration) ..... 74 

Table 9: Average difference between real and simulated values (SDM Validation) ...... 75 

Table 10: Main Crop Combinations in CLFI Systems for Matopiba Region ................. 82 

 

  



 
 

List of Graphs 

 

Graph 1: Distribution of articles studied by Country/Region.......................................... 11 

Graph 2: Key topics for environmental impacts on agricultural frontiers ...................... 12 

Graph 3: Contribution of Economic Sectors to the GDP of the Matopiba Region (R$) 31 

Graph 4: Agricultural Production in Matopiba Region (t) ............................................. 32 

Graph 5: Distribution of Farming Land Use in Matopiba Region (ha) .......................... 34 

Graph 6: Distribution of Agricultural Land Use in Matopiba Region (ha) .................... 35 

Graph 7: Native Vegetation Area in Matopiba Region (ha) ........................................... 39 

Graph 8: Annual Trends in Farming Land Demand and Deforestation in Matopiba ..... 40 

Graph 9: Carbon Dioxide Emissions in Matopiba Region (tons GWP-AR5) ................ 41 

  



 
 

List of Figures 

 

Figure 1: Structure of the Doctoral Dissertation .............................................................. 7 

Figure 2: Results of the Scoping Search ......................................................................... 10 

Figure 3: Geographical Location Matopiba Region - Brazil .......................................... 29 

Figure 4: Territorial Delimitation of Matopiba by Biome Areas .................................... 37 

Figure 5: Distribution of Matopiba's River Basins ......................................................... 38 

Figure 6: The Process of the System Dynamics Modeling Building ............................. 57 

Figure 7: The format of the components of System Dynamics ...................................... 60 

Figure 8: The Impact Diagram of the SDM for Matopiba ............................................. 62 

Figure 9: Structure of the SDM for Matopiba ................................................................ 69 

Figure 10: Structure of the Native Vegetation Availability Subsystem .......................... 70 

Figure 11: Structure of the Virgin Land Availability Subsystem .................................... 71 

Figure 12: Structure of the Farming Land Demand Subsystem ..................................... 72 

Figure 13: Dynamic behavior of the main SDM elements ............................................. 77 

Figure 14: SDM Simulation Results for Matopiba ......................................................... 78 

  



 
 

List of Abbreviations 

AFI - Agroforestry Integration 

API - Agropastoral Integration 

ASPI - Agrosilvopastoral Integration 

CCA - Canonical Correlation Analysis  

CIMO - Context, Intervention, Mechanism, Outcome 

CLFI - Crop-Livestock-Forestry Integration  

CO2 - Carbon Dioxide Emission  

CO2 GWP - Carbon Dioxide Emission in Global Warming Potential 

EMBRAPA - Empresa Brasileira de Pesquisa Agropecuária  

EU - European Union 

FAO - The Food and Agriculture Organization 

GDP - Gross Domestic Product 

GHG - Greenhouse Gases  

GtCO2 - Gigatons of Equivalent Carbon Dioxide 

Ha - Hectares 

IBGE - Instituto Brasileiro de Geografia e Estatística  

IPEA - Instituto de Pesquisa Econômica Aplicada do Brasil 

Mha - Million Hectares  

MHDI - Municipal Human Development Index 

ML - Machine Learning  

Mt CO2e - Metric Tons of Carbon Dioxide Equivalent 

NGO - Non-Governmental Organization 

PRISMA - Preferred Reporting Items for Systematic Reviews and Meta-Analyses 

R$ - Brazilian Real 

REDD - Reducing Emissions from Deforestation and Forest Degradation  

RQ - Research question 

RSPO - Roundtable on Sustainable Palm Oil  

SD - System Dynamics  

SDM - System Dynamics Modeling  

SEEG - Sistema de Estimativa de Emissões de Gases de Efeito Estufa  

SPI - Silvopastoral Integration 

Sq. Cor - Squared Correlations  

SVI - Social Vulnerability Index  

T - Tons 

Tg C- Teragrams of Carbon 

VIF - Variance Inflation Factor  

  



 
 

Abstract  

The literature states that the advance of intensive agricultural production on the 

environment, known as the agricultural frontiers, is spreading mainly among emerging 

countries, due to lower production costs, flexible environmental regulations, soil fertility, 

and a favorable climate, among others. As a way of analyzing how environmental impacts 

are being generated and intensified, this dissertation presents a study of Brazil's newest 

agricultural frontier, Matopiba. The Matopiba region covers four states in the North and 

Northeast of Brazil and, although it comprises a large area of the Cerrado Biome, the 

region has gained considerable global importance due mainly to the production of 

soybeans and corn. Methodologically, this study used Descriptive Analysis, a Systematic 

Literature Review (SLR), and two empirical studies: Canonical Correlation Analysis 

(CCA) and System Dynamics Modeling (SDM). With the main objective of analyzing 

whether the Matopiba region of Brazil is a prominent topic in the world literature on 

agricultural frontiers and the environment in emerging countries, SLR showed that most 

of the world literature is concentrated in Brazil, but in the Amazon rainforest, indicating 

that studies on the Cerrado biome and the Matopiba region are still mainly concentrated 

among Brazilian researchers and are written in Portuguese. To analyze the environmental 

conditions generated by the agricultural frontier in Matopiba, CCA showed that there is a 

relationship between economic aggregates and environmental impacts in the region, with 

agricultural GDP having the highest canonical correlation with deforestation and one of 

the highest with CO2 emissions. In addition, the CCA showed that agricultural production 

has a positive relationship with environmental impacts in Matopiba, with soybean and 

corn production, respectively, being the most polluting in the region. Intending to predict 

how long the available natural resources will sustain intensive agricultural production on 

Matopiba's agricultural frontier, the SDM showed that, as the agricultural area increases, 

native vegetation in areas with high and medium agricultural suitability is expected to be 

extinct within 20 years if no sustainable agricultural measures are implemented in the 

region. The results of these studies, among other findings, deepen the discussion on the 

environment and agricultural frontiers in emerging countries, contribute to the orientation 

of environmental public policies in Matopiba, and present a formulation of System 

Dynamics Modeling on agriculture and the environment that can serve as a basis for 

studies in other emerging countries. 

Keywords: Agricultural Production. Environment. Brazilian Cerrado. 
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1. Chapter 1: Introduction 

 

1.1. Research Problem and Questions  

 

Agricultural frontiers, defined here as an expression indicating the advance of 

intensive agricultural production over the environment, are spreading mainly among 

emerging countries. This is due to factors such as flexible environmental regulations, 

lower production costs, growing global demand for agricultural products, and foreign 

investment, as well as social factors such as poverty and food dependency (Mariyam et 

al., 2023; Marengo et al., 2022; Dionizio et al., 2020; Spera et al., 2016; Horion et al., 

2016; Gasparri & de Waroux, 2015; Mastrangelo and Gavin, 2012). 

Current world grain production totals 3.3 billion tons, but this agricultural 

production is uneven, as it is concentrated in a few products and countries. Corn, rice, and 

soybeans (the three main commodities, respectively) account for two-thirds of world 

grain production and are grown mainly in emerging countries, where China, the United 

States, Brazil, and India account for 54% of all global production of these grains. In 

addition, with 124 million hectares under cultivation, Russia is the leading producer of 

barley, wheat, and sunflower; Indonesia and Malaysia are responsible for 95% of the 

world's palm oil production; Argentina, Paraguay, and Bolivia, alongside Brazil, are Latin 

America's main beef exporters (FAO, 2021). 

The advance of agricultural frontiers is drastically aggravating environmental 

problems (Dos Reis et al., 2023; Usman et al., 2023; Ibrahim et al., 2022; Jahanger, 

Usman and Ahmad, 2023; Makhdum et al., 2022; Usman and Balsalobre-Lorente, 2022; 

Avagyan, 2018; Feintrenie, 2014; Villela et al., 2014; Gibbs et al., 2010). Problems such 

as increased emissions of polluting gases, increased rates of deforestation, water 

pollution, and loss of animal biodiversity, among others, are the result of unsustainable 

agricultural production in emerging countries (Avagyan, 2021, 2017 and 2010; Adegbeye 

et al., 2020). Another problem faced in these countries is the increased use of fertilizers 

and pesticides, observed mainly in Latin America and Southeast Asia (Avagyan, 2018; 

Schreinemachers and Tipraqsa, 2012). 

The Matopiba region, the main focus of this study, is Brazil's most recent 

agricultural frontier. With an area of around 73 million hectares and a population of 6.2 

million (IBGE, 2022), Matopiba covers four states in the north and northeast of Brazil 

(Maranhão, Tocantins, Piauí, and Bahia), which comprise a large part of the Cerrado 

biome and a small part of Brazil's Caatinga biome. 
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The region is experiencing enormous economic growth, driven mainly by soybean 

and corn production (De Oliveira, Raposo, & Garcia 2024; Dos Reis et al., 2024; Loayza 

et. al, 2023; Nunes, Campelo Filho, & Benini, 2023). In 2021, soybean production was 

16 million tons and corn production was 7.4 million tons in Matopiba, making the region 

responsible for almost 15% of total soybean production and almost 9% of total corn 

production in Brazil (IBGE, 2022). This has given Matopiba considerable global 

importance in grain production. 

However, the advance of Matopiba's agricultural frontier has mainly been at the 

expense of the natural resources available in the region (Araújo et al., 2024; Evangelista 

& Pereira, 2024; De Sampaio Melo, Júnior, & de Espindola, 2024; Da Silva Arruda et al., 

2024; Siqueira et al., 2024; Agostinho et al., 2023; De Oliveira Aparecido et al., 2023; De 

Souza et al., 2023; Ferreira, 2023; Santos et al., 2023). More than 12 million hectares of 

natural vegetation in the Brazilian Cerrado were converted into agricultural areas between 

2000 and 2022 (MAPBiomas, 2023). In addition, in 2019 alone, almost 41 million tons 

of polluting gases (CO2 GWP-AR5) were emitted from agriculture in the region (SEEG, 

2020). 

Because it covers two biomes of great importance for the world's biodiversity and 

the current importance of grain production at a global level, the first research question is 

RQ1: Is the Matopiba region in Brazil a hot topic in the global literature on agricultural 

frontiers and the environment in emerging countries? Furthermore, given the subjectivity 

of the term “environment” and the great environmental, socioeconomic, territorial, and 

cultural diversity of emerging countries, RQ2: How can we systematize the literature on 

agricultural frontiers and the environment in emerging countries? Answers to questions 

such as RQ1.1: Are some emerging countries/regions more prominent in studies on 

agricultural frontiers and the environment? RQ2.1: Are there any similarities between 

research on agricultural frontiers and the environment in emerging countries? will help to 

answer RQ1 and RQ2, respectively. 

To answer RQ1 and RQ2, Chapter 2 provides a Systematic Literature Review 

(SLR) of the main studies on the environmental impacts of agricultural frontiers in 

emerging countries over the last thirty years (1993 to 2022). The literary data for the 

development of Chapter 2 comes mainly from my systematic review article entitled 

“Agricultural Frontiers and Environment: A Systematic Literature Review and Research 

Agenda for Emerging Countries”, carried out in 2022 and published in the Journal 

"Environment, Development and Sustainability" in October 2023 (Sales, 2023). To 
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develop Chapter 2, the analysis initially included 14,366 scientific articles from a wide 

range of subjects in the social and natural sciences, available in the Web of Science 

(Clarivate Analytics), Google Scholar, and ScienceDirect (Elsevier) databases. 

SLR was the methodology chosen to formulate the theoretical basis for this 

dissertation because it is one of the most effective and robust ways of conducting a 

literature review today. This method evaluates, provides accurate and relevant 

information, and synthesizes evidence on a given subject. 

 

The Hypothesis for RQ1 is that: H1: Despite the growing number of studies on the 

Matopiba region in Brazil, it is still not as prominent in the global literature on agricultural 

frontiers and the environment, since most of this research is concentrated among Brazilian 

researchers, and is written in Portuguese. 

 

The Hypothesis for RQ2 is that: H2: Emerging countries are very diverse, but I believe 

there is some similarity between the research that emphasizes the relationship between 

agricultural frontiers and the environment in these countries. These studies essentially 

seek to measure the environmental impacts promoted by intensive agriculture, as well as 

to analyze more sustainable agricultural public policies and technologies. 

 

Chapter 3, informative and descriptive, aims to present and contextualize the 

socio-economic and environmental characteristics of the Matopiba region in Brazil. This 

descriptive analysis is essential for understanding, organizing, and summarizing the data 

that will be used in the empirical studies in this thesis (chapters 4 and 5).  Chapter 3 is 

divided into two parts: the first section presents data that provides an overview of 

Matopiba's socio-economic situation; the second section analyzes the main environmental 

impacts that have been occurring in the region. As a reference, databases provided by the 

main Brazilian federal institutes and agencies were used.  

Chapter 4, of an empirical nature, aims to analyze the environmental conditions 

generated by Matopiba's agricultural frontier using machine learning techniques. Concern 

about the environmental impacts of Matopiba's agricultural frontier is no coincidence and 

is gaining widespread repercussions. The first fact is that recovering the vegetation of the 

Cerrado Biome is not simple, as the biome is more than 45 million years old (in a quick 

comparison, the Amazon Biome is only 3,000 years old). Furthermore, although Cerrado 

is important for global agricultural production, it is also home to many species endemic 

to the planet and is one of the most important sources of fresh water in Latin America. 
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The idea behind Chapter 4 is to develop two canonical correlation statistical 

models to verify the relationship and magnitude of dependence between economic 

variables (GDP aggregates) and environmental variables (deforestation, CO2 emissions), 

as well as the relationship of dependence between the production of the region's main 

crops (soybeans, corn, sugar cane, rice, etc.) and the variables that represent 

environmental impacts.  

This methodology was chosen because of the possibility that Canonical 

Correlation Analysis (CCA) offers of analyzing the degree of magnitude between sets of 

dependent and independent variables, as well as within each of these sets. CCA also 

makes it possible to use more than one dependent variable, as well as metric and non-

metric variables. 

The CCA analyses used the databases provided by the Gas Emission Estimation 

System (SEEG-Brazil), the Brazilian National Institute for Space Research, and the 

Brazilian Institute of Geography and Statistics (IBGE-Brazil) for the 31 micro-regions of 

the Matopiba region.  

These two CCA statistical models serve as a basis to answer Research Questions 

3 and 4 and to prove Hypotheses 3 and 4, respectively. 

 

RQ3. Is there any relationship between the economic aggregates and the environmental 

impacts generated on Matopiba's agricultural frontier? 

RQ3.1. Which economic aggregate contributes the most to environmental impacts in 

the Matopiba region? 

 

H3: There is a relationship between economic aggregates and environmental impacts in 

the Matopiba region, with the agricultural sector contributing the most to environmental 

degradation. 

 

RQ4. Is agricultural production in Matopiba related to the environmental impacts 

generated in the region? 

RQ4.1. Which crops contribute most to environmental impacts in Matopiba's 

agricultural frontier? 

 

H4: Agricultural production has a relationship with environmental impacts in Matopiba, 

with soybean and corn production contributing the most to environmental issues in the 

region. 
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Chapter 5, also empirical, aims to use System Dynamic Modeling (SDM) to 

predict the future of the Matopiba region regarding available natural resources and 

intensive agricultural production. The methodological choice of SDM was due to the 

possibility of creating robust modeling and analysis of large-scale socio-economic 

systems for decision-making on complex issues, such as the clash between agricultural 

frontiers and the environment. 

Matopiba is at a critical level of depletion of native vegetation and land suitable 

for agriculture, in which there are only 2.6 million hectares of undegraded pastures 

suitable for agriculture and an area of around 7.5 million hectares of native vegetation 

with high and medium agricultural suitability (BRASIL, 2021; Rudorff et al., 2015). In 

addition, more than 600,000 hectares of native vegetation are cleared every year in the 

region, converted mainly for agricultural cultivation (MapBiomas, 2023). 

Thus, the following question arises: if current intensive agricultural production 

continues and no environmental intervention is implemented in the region, RQ5: how 

soon will the native vegetation be exhausted in the agriculturally suitable areas of 

Matopiba?  

 

The Hypothesis for RQ5 is that: H5: Matopiba's native vegetation is expected to be 

extinct in the agriculturally suitable areas within 20 years if current intensive agricultural 

production continues and no environmental intervention is implemented in the region. 

 

In addition to trying to answer RQ5, Chapter 5 also discusses measures (actions 

and/or public policies) to try to contain or slow down the process of environmental 

depletion in the Matopiba region.  

Chapter 6, which is argumentative, presents the theses of the dissertation. The 

theses present my critical position on the subject discussed in this research, using original 

arguments and propositions evidenced by whether the study's hypotheses are met. 

 

1.2 Research Motivations and Relevance 

 

At first, I realized that, despite Matopiba's agricultural and environmental 

importance, this region has not yet “gained” worldwide repercussions when compared to 

the Amazon Region, for example. Therefore, the first motivation for this study is to verify 

whether the Matopiba region in Brazil is a prominent topic in the global literature on 

agricultural frontiers and the environment. This analysis will help to visualize a possible 
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and important gap in the global literature on agricultural frontiers and the environment in 

emerging countries. 

When relating agricultural production and the environment in Matopiba, I realized 

that there are no studies that verify which crops are considered the most polluting or least 

sustainable in the region. Therefore, my second motivation was to fill this gap and 

formulate, using machine learning techniques, an analysis of environmental conditioning 

between crops. It is believed that this information will serve as a basis for formulating or 

encouraging sustainable agricultural policies.  

Another concern that motivated this study was to find out how much time “we 

have left” to try to reverse or minimize the process of extinction of the Cerrado Biome 

present in Matopiba. With the help of System Dynamics Modeling, the complexity of the 

dynamic relationship between the main crops and natural resources in Matopiba can be 

verified and, from there, measures can be proposed to help make agricultural production 

more sustainable.   

The relevance of this study lies, among other factors, in the fact that it is one of 

the pioneers in deepening the discussion in the literature on the environment and 

agricultural frontiers in emerging countries; it contributes to the world literature on 

environmental issues in Brazil's Cerrado Biome; it presents and analyzes the 

environmental impacts promoted by intensive agricultural production in Matopiba to 

contribute to the orientation of environmental public policies in the region; it presents 

machine learning techniques to analyze environmental and economic variables for 

Matopiba; and it is a pioneer in the formulation of a System Dynamics Modeling on 

agricultural production and environmental impacts for the Brazilian Cerrado. 

 

1.3. Structure of the Doctoral Dissertation 
 

This dissertation is divided into six chapters, as shown in Figure 1. Chapter 1 

introduces the study, presenting the research problem and questions, and the justification 

for this work, as well as the structure of the dissertation. Chapter 2 provides the theoretical 

background, through a Systematic Literature Review, with the main studies and theories 

on agricultural frontiers and the environment in Emerging Countries (this chapter serves 

as the basis for Research Questions 1 and 2).  
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Figure 1: Structure of the Doctoral Dissertation 

 
Source: Own Elaboration. 

 

Chapter 3 provides the descriptive statistics of this study, presenting the 

geographical scope and main characteristics of the Matopiba Region of Brazil. Chapter 

4, the first empirical study in this dissertation, presents the Canonical Correlation 

Analyses to verify the conditioning factors of environmental impacts in Matopiba (this 

chapter serves as the basis for Research Questions 3 and 4).  

Chapter 5, the second empirical study in this dissertation, presents System 

Dynamics Modeling applied to predicting the future of Matopiba's agricultural frontier 

(this chapter serves as the basis for Research Question 5). Finally, Chapter 6 presents the 

theses of the dissertation, as well as the limitations of this study and contributions to future 

research.  
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2. Chapter 2: Literature Review: Agricultural Frontiers and Environment in 

Emerging Countries 

 

Introduction 

The Matopiba region in Brazil is currently considered a region of great importance 

for global soybean and corn production, as well as it comprehends a large part of the 

Cerrado biome and a small part of the Caatinga biome, both of which are of great 

importance for global biodiversity. Thus, the following research question arises: RQ1: Is 

the Matopiba region in Brazil a hot topic in the global literature on agricultural frontiers 

and the environment in emerging countries? RQ1.1: Are some emerging countries/regions 

more prominent in studies on agricultural frontiers and the environment? 

Furthermore, to analyze and measure the environmental impacts of intensive 

agricultural production in emerging countries, it is necessary to consider the disparities 

and specificities of each region. Thus, RQ2: how can studies related to agricultural 

frontiers and the environment in emerging countries be synthesized? RQ2.1: Are there 

any similarities between research on agricultural frontiers and the environment in 

emerging countries? 

To answer these questions, this chapter presents a Systematic Literature Review 

(SLR) of the main studies on the environmental impacts of agricultural frontiers in 

emerging countries from 1993 to 2022. The choice of the period of analysis was due to 

the curiosity of knowing whether literature "kept pace" with the environmental 

transformations promoted by the development of intensive agriculture in the mid-

twentieth century. The choice to use SLR is because it is a systematic method for 

evaluating and synthesizing a given subject and, in this specific study, it will act as a gap 

to fill in the lack of in-depth discussion of studies on the environment and agricultural 

frontiers in emerging countries. 

The first section of this chapter describes the methodological process involved in 

constructing the systematic literature review. Descriptive in nature, the second section 

presents the geographical distribution and the main terms found in the literature on 

agricultural frontiers and the environment. Section 3 discusses the main research carried 

out in emerging countries, emphasizing what the authors are concerned with studying in 

each country/region. Section 4 analyzes and presents how studies connect agricultural 

frontiers and the environment in emerging countries, subdividing this discussion into two 
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focuses: the Expanded Industrial Agriculture Focus and the Socio-Economic-Ecological 

Focus. Section 5 presents the main suggestions and indications for future research. 

 

2.1 The Systematic Literature Review Methodology 
 

To analyze the main studies on agricultural frontiers and the environment in 

emerging countries, this chapter used a Systematic Literature Review (SLR) as a 

methodological process. A systematic review is conducted through a literature search, 

evaluation, and synthesis of evidence on a given subject, to provide accurate and relevant 

information (James et al., 2021). 

In the initial phase of the SLR, the CIMO approach proposed by Denyer and 

Tranfield (2009) was used, which consists of planning the research questions and defining 

the scope of the study with emphasis on four points: the search for the scope and 

understanding of the context "C", the intervention "I", the mechanisms "M" and the 

results "O" that involve the research. After formulating and understanding the planning 

process, the Preferred Reporting Items for Systematic Review and Meta-Analysis 

Protocols (PRISMA-P) were adopted to select the main studies. According to Moher et 

al. (2015), the PRISMA protocol helps to identify the main questions and problems 

addressed in the literature. 

Thus, this SLR consists of 7 stages, with procedures 1 to 3 being part of the 

planning phase and procedures 4 to 7 being part of the PRISMA protocol, namely: 1 - 

search for possible studies following search queries selected based on expert 

recommendations; 2 - search for possible articles in other sources; 3 - implementation of 

inclusion and exclusion criteria; 4 - analysis and removal of duplicate articles; 5 - 

selection of articles for first reading (title, keywords, and abstract); 6 - selection of articles 

for full reading; 7 - analysis of the synthesis. 

The Systematic Literature Review was carried out in 2022 with articles published 

between 1993 and 2022 (30 years). Initially, 14,366 scientific articles from the social and 

natural sciences disciplines were collected through search queries for the key terms 

"agricultur*1 OR livestock OR farming AND frontier* AND environment*". This was 

done using electronic databases made available by ScienceDirect (Elsevier), Web of 

Science (Clarivate Analytics), and Google Scholar platforms.  

 
1 The use of asterisks next to keywords indicates that the exact spelling of the word was included in the 

search, for example, agricultur* includes agriculture, agricultural, etc. 
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In the second stage, articles were analyzed which, even if they were not in the 

searches of the three database platforms, were relevant, including recommended or well-

known articles. From there, the inclusion and exclusion criteria were implemented, which 

consisted of selecting scientific articles ONLY written in English, published between 

1993 and 2022, with a citation number2 > 50 or with an average of 10 citations per year, 

and which had emerging countries3 as their area of study.  

Following the inclusion and exclusion criteria, as well as the recommendations, 

138 articles were analyzed for possible duplicates using the EndNote reference 

management software. The summary of the process is illustrated in Figure 2. 

 
 

Figure 2: Results of the Scoping Search 

 
Source: Own Elaboration.  

 
2 The number of citations was not an exclusion criterion for the additional relevant articles recommended 

by other sources. 
3 The key terms for the analysis of emerging countries were: 'Developing countries OR Emerging countries 

OR Latin America OR Transition economies OR BRIC* OR Brazil OR India OR China OR Russia OR 

Indonesia OR Malaysia OR Argentina OR Turkey OR Mexico OR Hungary OR Poland OR Croatia OR 

South Africa OR Egypt OR Morocco’. 
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After eliminating the duplicate articles, the analysis was further refined, in which 

108 articles were selected for an initial reading of the title, keywords, and abstract and, 

after cutting out 42 articles, 66 articles were read in full. Finally, after full reading, only 

6 articles were excluded, and 60 articles categorized as "highly relevant" were ready for 

the literature review (n = 60).  

 

2.2 Geographical Distribution and Key Terms of Studies 

 

From the papers, 15 countries/regions are mentioned regarding the relationship 

between the agricultural frontier and the environment. Brazil was the most explored one 

with 20 papers (33,34% of the sample), followed by South America with 6 (10%), then 

the island region of Indonesia/Malaysia with 5 (8,35%), and Mexico, Indonesia (alone), 

and China with 4 articles each (6.66% each). Emerging countries were addressed by 2 

papers only (3.33%). The selected papers' distribution is illustrated in Graph 1. 

 

Graph 1: Distribution of articles studied by Country/Region 

 
Source: Own Elaboration. 

 

Following the methodology employed in the articles, it was noted that the 

influence of agricultural frontiers can encompass numerous factors and be evaluated 

through various methods. Regarding the methodological process characteristics, most of 

the studies were empirical (46), with only 14 adopting a theoretical approach. The 

empirical studies utilized a range of research models and methods, including satellite 
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mapping analysis (15 articles), linear regression models (10 articles), simulation models 

(8 articles), logit models (6), analysis of variance (3), probabilistic models (2 articles), 

and both case studies and mathematical models (1 article each). Conversely, the 

theoretical articles mainly discussed the topic using the descriptive method (14 articles). 

Although each article had specific goals, their primary aim was to analyze the 

impact of agricultural production on nature, assessing its effects on various environmental 

factors or examining the public policies and socioeconomic aspects involved. As shown 

in Graph 2, most authors focused on studying public policies for preservation or 

regeneration in agricultural frontiers (15 articles). 

The second most researched topic was the environmental impact on land use (10 

articles), followed by deforestation (7 articles). The interference of socioeconomic factors 

in the relationship between the environment and agricultural frontiers was studied in 5 

articles. Additionally, there were studies on the environmental impact on animal 

biodiversity (4 articles), the measurement of greenhouse gas emissions (3 articles), and 

the impact on water (1 article). 

 

Graph 2: Key topics for environmental impacts on agricultural frontiers 

 
Source: Own Elaboration. 

 

Furthermore, due to the broad and subjective nature of the term "environment," 

some articles (15 in total) did not focus on a single specific point but instead addressed 

multiple themes. For instance, one article analyzed the interference of agricultural 
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frontiers on both land and water use, another looked at greenhouse gas emissions and land 

use, and another explored the interplay of socioeconomic factors and water use. Other 

studies examined deforestation alongside animal biodiversity, socioeconomic factors, or 

preservation and regeneration policies (1, 1, and 3 articles respectively). When an article 

had more than two main themes, it was classified as a general approach paper, with 7 such 

papers being studied. 

 

2.3 Key Studies by Country/Region 
 

Analyzing studies on agricultural frontiers in emerging countries provides a 

comprehensive context due to the unique characteristics of each country. Whether 

considering population size, topography, climate, or political landscape, research in these 

nations encompasses a diverse array of aspects and issues. This section offers an overview 

of significant research conducted in emerging countries, highlighting the primary 

concerns of the authors in each region. 

Brazil, known as a global biodiversity hotspot, has been a focal point for studies 

on the environmental impacts of intensive agricultural production, especially in the 

Amazon Rainforest (Nepstad et al., 2001, 2006, 2008; Mertens et al., 2002; Soares-Filho 

et al., 2002, 2004; Rodrigues et al., 2009; Pacheco, 2009; Macedo et al., 2012; Schiesari 

et al., 2013; Verburg et al., 2014; Ochoa-Quintero et al., 2015; Nobre et al., 2016). 

Research topics in the Brazilian Amazon are diverse, covering loss of animal biodiversity, 

deforestation measurement, land use, and forest preservation policy analysis. 

For instance, Nepstad et al. (2001) and Soares-Filho et al. (2004) investigated the 

impacts of road paving on deforestation, while Rodrigues et al. (2009) studied how human 

development levels influence deforestation. Mertens et al. (2002) focused on 

deforestation due to cattle ranching, and Ochoa-Quintero et al. (2015) on the loss of native 

species from environmental degradation. 

Studies on public policy effectiveness include Nepstad et al. (2006), who 

compared inhabited and uninhabited reserves, and Pacheco (2009), who examined land 

reform impacts on deforestation. Nepstad et al. (2008) analyzed economic, forest, and 

climate trends in the Amazon, while Verburg et al. (2014) looked at balancing 

conservation policies with commodity prices. Nobre et al. (2016) proposed a new 

sustainable development paradigm for land use and climate change. 
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In addition to studies on the Amazon, a few articles analyzed other Brazilian 

biomes of global importance, such as the Cerrado and the Atlantic Forest. One fact worth 

highlighting is that, with the implementation of the inclusion and exclusion criteria for 

this SLR (scientific articles ONLY written in English, published between 1993 and 2022, 

and with citation number greater than 50), only 3 articles dealt with the Brazilian Cerrado 

or the Matopiba region in Brazil. However, before the English language exclusion 

criterion was implemented, 98 articles considered to have a high impact factor dealt with 

the issue of the agricultural frontier and the environment in the Matopiba region. This 

shows that research on the Brazilian Cerrado or the Matopiba region in Brazil is still at a 

local level, i.e. it is mainly concentrated among Brazilian researchers and is written in 

Portuguese. 

Research on the Cerrado has focused on land use and water reuse (Spera et al., 

2016), soybean production expansion (Rausch et al., 2019), and optimizing agricultural 

profit while maintaining freshwater quality and biodiversity (Kennedy et al., 2016). In 

the Atlantic Forest, Umetsu and Pardini (2007) examined habitat changes for small 

mammals due to human activity. Broader studies include Barretto et al. (2013) on 

agricultural intensification and land use patterns, Picoli et al. (2018) on crop expansion 

and land changes from pasture intensification, and Da Silva Junior et al. (2020) on 

persistent fires and compliance with the 2015 Paris Agreement. 

The literature on agricultural frontiers and the environment is not confined to 

Brazil. Indonesia and Malaysia also feature prominently due to significant agricultural 

expansion driven by palm oil production (Koh and Wilcove, 2008; McCarthy and Cramb, 

2009; Koh et al., 2011; Wicke et al., 2011; Carlson et al., 2012, 2013, 2018; Miettinen et 

al., 2012; Busch et al., 2015).  

Additionally, articles addressing multiple emerging countries discuss the 

environmental impact of commodity production and exports (Henders, Persson, and 

Kastner, 2015) and smallholder farmers' deforestation decisions (Babigumira et al., 

2014). Studies focusing on South America examine agricultural intensification in the 

Chaco region (Baumann et al., 2017; Fehlenberg et al., 2017; Le Polain de Waroux et al., 

2018) and the Río de la Plata area (Baeza and Paruelo, 2020). 

Research in China has centered on land use variations (Lin and Ho, 2003; Chen 

et al., 2014), agricultural production efficiency (Deng and Gibson, 2019), and water use 

(Wang et al., 2019). Mexican studies often explore trade-offs, such as between ecological 

reserves and archeological-ecotourist zones (Turner Ii et al., 2001), economic benefits of 
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irrigation versus groundwater effects (Raquel et al., 2007), and community-based forest 

management versus protected areas (Ellis and Porter-Bolland, 2008). 

Argentine research has mainly focused on the Chaco, investigating agricultural 

expansion's effects on deforestation (Gasparri and Grau, 2009) and animal biodiversity 

(Mastrangelo and Gavin, 2012), as well as the controlling factors of this expansion 

(Volante et al., 2016). Indian studies have examined the environmental consequences of 

the Green Revolution (Singh, 2000), the impacts of human interference in watersheds 

(Rao and Pant, 2001), and the presence of big cats in agricultural areas (Athreya et al., 

2013). 

Studies indicate that agricultural frontiers impact the environment in emerging 

countries through intensive production, with the extent varying based on natural resources 

affected and country-specific factors such as public policies, regulations, and incentives. 

To provide updated insights and support the discussion in the next section, Table 1 

presents literature on agricultural frontiers and the environment in emerging countries 

published from 2013 to 2022.



16 
 

Table 1: Reputable articles on Agricultural Frontiers and the Environment from 2013 to 2022 

Reference Study area Approach / Issue  Contributions 

Volante et al. (2016) Argentina 
Preservation or 

regeneration policies 

The "Native Forest Law" was enacted to regulate the deforestation process; nonetheless, it proved 

insufficient to prevent the land from changing due to deforestation. 

Nobre et al. (2016) Brazil 
Preservation or 

regeneration policies 

The creation of high-value goods, services, and platforms using digital, biological, and sophisticated 

materials technology is made possible by the Amazon Rainforest. It is recognized as a worldwide 

audience of biological assets as a result. 

Spera et al. (2016) Brazil Land use / Water 

Between 2003 and 2013, there was a yearly decline in the amount of water recycled into the atmosphere 

through evapotranspiration because of the agricultural area expanding from 1.2 to 2.5 million hectares, 

with native Cerrado vegetation accounting for 74% of this newly cultivated land. 

Barretto et al. (2013) Brazil Land use 

In agriculturally consolidated areas, land use intensification occurred in tandem with the shrinkage of 

cultivated and pasture lands, in contrast to agricultural frontier areas where land use intensification 

occurred in tandem with the extension of agricultural land. 

Ochoa‐Quintero et al. 

(2015) 
Brazil 

Deforestation / 

Biodiversity 

Mammal and bird species are less common in environments where between 30 and 40 percent of the 

land is covered by forests. By 2030, just 22% of landscapes would probably be able to support at least 

75% of these species due to deforestation, according to predictions. 

Kennedy et al. (2016) Brazil Land use 

Better outcomes arise when the focus of land use is biodiversity and ecosystem services. In comparison 

to the way land is now used, the Cerrado can potentially increase agricultural revenue and provide 

significant benefits in biodiversity and water quality. 

Picoli et al. (2018) Brazil Land use To preserve land for agricultural use, one solution is the dual production system. 

Schiesari et al. (2013) Brazil 
Preservation or 

regeneration policies 

Small farmers who receive no technical assistance and little knowledge have increased their use of 

pesticides. Large manufacturers, on the other hand, adhere to scientific advice more and even replace 

the most hazardous substances willingly since they have access to higher technical knowledge and 

resources. 

Verburg et al. (2014) Brazil 
Preservation or 

regeneration policies 

The importance of conservation policies is demonstrated by the fact that, depending on the commodity 

price scenario, a fall in the average policy aim of the Forest Code from 80% to 60% results in an 

additional 41 to 57% deforestation. 

Rausch et al. (2019) Brazil General Approach 
Between 2003 and 2014, the increase of soy contributed 22% to the conversion of the Cerrado biome, 

despite the industry's incentives to move production to previously deforested areas. 
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Da Silva Junior et al. 

(2020) 
Brazil 

Preservation or 

regeneration policies 

Brazil needs to utilize public policies, private sector initiatives, and societal changes to curb 

deforestation brought on by the enlargement of the agricultural frontier in the Amazon and Cerrado 

biomes. If not, national GHG reduction targets will be jeopardized because the total emissions from fires 

in the six Brazilian biomes will surpass 5.7 GtCO2. 

Chen et al. (2014) China Land use 

There are two "lessons" to be learned from China's policies for rural development: non-migrants should 

be encouraged to modify their farms during the emigration process in rural areas, and their interests 

should also be protected by the government; land zoning and other ecological protection policies should 

restrict border deforestation. 

Deng and Gibson 

(2019) 
China 

Socioeconomic 

Factors 

While eco-efficiency is better in developed city areas, land productivity is concentrated in cities located 

far from the provincial or economic center. Thus, sustainable agricultural output requires timely 

management of trade-offs between agricultural productivity and urbanization. 

Wang et al. (2019) China 
Socio-economic 

factors / Water 

Between 2000 and 2017, China's efficient use of water in agriculture was attributed to the increasing 

percentage of secondary or higher education and the per capita income of rural families. 

Henders, Persson and 

Kastner (2015) 

Emerging 

countries 

Greenhouse gas 

emissions / Land use 

Between 2000 and 2011, the primary embodied flows of land use change in emerging countries were 

attributed to the export of soybeans and beef from Latin America to China, Europe, North Africa, and 

the Middle East. Conversely, the primary embodied flows of carbon emissions were attributed to the 

export of wood products and palm oil from Indonesia and Thailand to Europe and Asia, primarily to 

China and India. 

Babigumira et al. 

(2014) 

Emerging 

countries 

Socio-economic 

factors / Deforestation 

Poorer and more isolated households in Emerging Countries were less likely to destroy forests than 

households with medium to high assets and a stronger market orientation. 

Horion et al. (2016) Eurasia General Approach 

The collapse of the Soviet Union, the abandonment of farmland, and human influences (more 

salinization, increased grazing intensity, and altered irrigation techniques) have all contributed to a 

decline in rainfall efficiency. 

Athreya et al. (2013) India Biodiversity 

Although a wide range of wild carnivores can be found on human-dominated agricultural land, the 

absence of other wild animals and wild herbivore prey suggests that agriculture has caused human 

intervention in native ecosystems. 

Carlson et al. (2013) Indonesia 
Greenhouse gas 

emissions 

Between 2000 and 2010, the country's 47% intact forest destruction was fueled by intensive palm oil 

development. According to projections, the growth of plantations in Kalimantan alone would be 

responsible for about 20% of Indonesia's CO2 emissions in 2020 if this course was continued. 

Carlson et al. (2018) Indonesia 
Preservation or 

regeneration policies 

Deforestation in the nation has decreased by 33% because of palm oil plantations accredited by the 

Roundtable on Sustainable Palm Oil (RSPO). Nonetheless, most approved plantations had minimal 

residual forest, indicating that certification is ineffective. 
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Busch et al. (2015) Indonesia 
Preservation or 

regeneration policies 

The nation's rates of deforestation have increased as a result of concessions for oil palm plantations and 

logging operations in recently approved regions. The implementation of a carbon pricing program or 

broadening the moratorium to include not just existing concessions but also regions outside of 

concessions and protected areas would have prevented this. 

Graesser et al. (2015) Latin America Land use 
In Latin America, between 2001 and 2013, new agriculture and grassland displaced forests by 17% and 

57%, respectively. 

Meyfroidt et al. (2016) 
Russia and 

Ukraine 

Preservation or 

regeneration policies 

After 2000, areas with a younger workforce and a growing rural population saw greater recultivation 

and less abandonment of crops. Just 8.5 million hectares (Mha) of the 47.3 million Mha of farmed land 

that was abandoned in 2009 may be used for agriculture with no cost to the environment and few 

socioeconomic limitations. 

Jewitt et al. (2015) South Africa General Approach 

Between 2005 and 2011, the primary factors contributing to the loss of 7.6% of KwaZulu-Natal's natural 

habitat were mining, dams, agriculture, and forestry plantations. Additionally, the residual biodiversity 

in these places or those nearby is negatively impacted by the anthropogenically altered land covers, 

including secondary vegetation. 

Baumann et al. (2017) 
South 

America 

Greenhouse gas 

emissions 

Between 1985 and 2013, crops and pastures replaced 20% of the whole Chaco Forest, resulting in 

massive carbon emissions of 824 Tg C overall and 46.2 Tg C in 2013 alone. 

Fehlenberg et al. 

(2017) 

South 

America 
Deforestation 

Livestock in Argentina, Bolivia, and Paraguay was strongly linked to deforestation. However, soy 

farming in Argentina may have contributed indirectly to deforestation in Bolivia and Paraguay, as it was 

the only direct cause of deforestation in the Argentine Chaco. 

Gasparri and De 

Waroux (2015) 

South 

America 

Preservation or 

regeneration policies 

Coupled agricultural frontiers make more actor-centered approaches to conservation policy and research 

necessary. These methods must be grounded in practical models that consider the growing coupling 

between productive sectors and geographic areas. 

Le Polain de Waroux 

et al. (2018) 

South 

America 

Socioeconomic 

Factors 

Frontier expansion in the Chaco was fueled by revenue generated by new agricultural technologies, 

infrastructure, and increased producer prices. However, the existence of anomalous economic rents and 

the presence of a small number of individuals with the ability to affect the entire process impact the 

dynamics of these borders. 

Baeza and Paruelo 

(2020) 

South 

America 
Land use 

The Campos do Rio da Prata are experiencing a significant shift in land use, mostly as a result of the 

agricultural frontier's advancement (which increased by 23% between 2000 and 2014) and the 

disappearance of field areas on both sides of the Uruguay River and in the western part of the Pampa 

Interior. 

Nolte et al. (2017) 
South 

America 

Preservation or 

regeneration policies 

It is likely more difficult to encourage governmental and commercial players to implement effective 

policies to counteract deforestation in the Brazilian Amazon than it is in the Cerrado, Chaco, and 

Chiquitano. 

Source: Own Elaboration. 
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2.4 The Connections between Agricultural Frontiers and the Environment 

 

The literature review has concentrated on measuring the effects of intensive farming on 

remaining natural resources, along with analyzing more sustainable agricultural public policies 

and methodology. Consequently, the interaction between agricultural expansion and the 

environment in Emerging Countries will be explored in two distinct approaches: the Extended 

Industrial Agriculture Focus, which involves the literature's emphasis on measuring, analyzing, 

and interpreting the impacts on natural resources (including water, soil, air, wildlife, and plants) 

caused by the growth of agricultural activities; and the Socio-Economic-Ecological Focus, which 

examines how local socioeconomic factors and public policies influence population behaviors in 

the context of environmental and agricultural frontier interactions. 

 

2.4.1 Extended Industrial Agriculture Focus 

Several studies have shown significant environmental impacts resulting from the expansion 

of agricultural frontiers in emerging countries. Research with Extended Industrial Agriculture 

Focus has examined these impacts on a wide range of natural resources, including land, fauna, 

flora, air, and water. To do this, the researchers used argumentative/narrative text, satellite-based 

maps, and linear, probabilistic and simulation models as the main methodologies. 

The term "environment" is broad and subjective, leading some researchers to address 

multiple natural resources in a single study. Data revealed that studies analyzing two natural 

resources primarily focus on the environmental impact of agricultural production on land use or 

flora (deforestation) along with another resource. For example, Ochoa-Quintero et al. (2015) found 

that deforestation in the Brazilian Amazon reduced mammal and bird populations in areas with 30 

to 40% forest cover. Predictions for 2030 indicated that under the same deforestation scenario, 

only 22% of Amazonian landscapes would support at least 75% of these species. 

Henders, Persson, and Kastner (2015) identified that changes in land use and carbon fluxes 

from 2000 to 2011 were primarily driven by exports of beef, palm oil, and soybean in Emerging 

Countries. Spera et al. (2016) found that agricultural expansion in the Brazilian Cerrado from 2003 

to 2013 decreased the amount of water recycled into the atmosphere. 

Articles that analyze multiple natural resources provide a broader view of regional impacts. 

For instance, Rao and Pant (2001) concluded that agricultural and extractive activities, coupled 

with population growth, led to a vegetation cover decline in the central Himalayan region of India 
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between 1963 and 1996, which in turn stimulated soil and water loss in the Sadiyagad watershed 

region. 

In Malaysia and Indonesia, Koh et al. (2011) reported that 6% of tropical peatlands were 

used for palm oil production, causing the emission of over 4.5 million Mg of carbon per year and 

the loss of 140 million g of biomass carbon, along with significant biodiversity destruction. 

Similarly, Carlson et al. (2012) noted a 4% reduction in forest cover in Indonesia from 1989 to 

2008 due to intensive palm oil production, with projections indicating further deforestation on 

regional and community lands. 

Studies covering Eurasia, Africa, and Brazil also highlight diverse environmental impacts. 

Horion et al. (2016) observed that rainfall use efficiency in the region from Western Ukraine to 

Eastern China and from Southern Russia to Turkmenistan decreased following the Soviet Union's 

collapse in 1991, alongside anthropogenic effects like grazing intensity, increased salinization, and 

irrigation changes. 

Jewitt et al. (2015) found that from 2005 to 2011, over 7% of the natural habitat in South 

Africa's KwaZulu-Natal was devastated due to intensified agriculture, mining, and dam 

construction, transforming land use and causing biodiversity loss. In Brazil, Rausch et al. (2019) 

attributed 22% of the Cerrado Biome’s deforestation from 2003 to 2014 to soybean production, 

suggesting that private sector policies restricting deforestation could reduce degradation. 

Land Use 

The review then focuses on studies analyzing the impact of agricultural frontiers on 

individual natural resources, beginning with land use. Barretto et al. (2013) used the OLS model 

to show that intensified land use decreased pastures and crops in established agricultural regions 

while increasing agricultural land on the frontiers. Baeza and Paruelo (2020) found that 

agricultural expansion in the Río de la Plata4 region decreased pastures, particularly along the 

Uruguay River and western Pampa Interior. 

Graesser et al. (2015) emphasized the importance of distinguishing between pastures and 

crops in land use efficiency studies in Latin America, as they have different soil impacts. Wicke et 

al. (2011) concluded that palm oil production significantly impacted land use in Indonesia and 

 
4 The South American countries of Uruguay and Argentina have natural border between them, formed by Rio de la 

Plata. 
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Thailand, leading to substantial forest cover loss. Lin and Ho (2003) reported significant 

agricultural land loss in China due to urbanization, rural industrialization, and agricultural 

restructuring. Chen et al. (2014) highlighted the need to consider rural out-migration when 

studying land use changes in China. 

To mitigate the environmental impact of agricultural production on land use, Picoli et al. 

(2018) suggested that double cropping systems in Mato Grosso, Brazil, saved land used for 

agriculture. Kennedy et al. (2016) indicated that optimal land use outcomes balance agricultural 

needs with environmental preservation. Smith et al. (2007) found that soil organic carbon loss due 

to climate change in Russia and Ukraine could be minimized by prioritizing environmental 

considerations. 

Flora 

Flora in Emerging Countries is heavily impacted by agricultural production, with 

significant deforestation attributed to soy and livestock. Fehlenberg et al. (2017) found that 

soybean cultivation drove deforestation in the Argentine Chaco, while cattle ranching increased 

deforestation in Argentina, Bolivia, and Paraguay. Mertens et al. (2002) linked cattle production 

in the Brazilian Amazon to increased deforestation and fire outbreaks. Müller et al. (2012) noted 

that intensive agriculture and cattle ranching drove deforestation in Bolivia. 

Gasparri and Grau (2009) reported that global soy demand led to the clearance of 1.4 

million hectares of dry forest in the Argentinean Chaco from 1972 to 2007. Macedo et al. (2012) 

suggested that soybean production could inversely relate to deforestation with effective land use 

policies. 

Other factors also drive deforestation. Nepstad et al. (2001) observed that road construction 

increased deforestation rates in the Amazon Rainforest. Pacheco (2006) found that deforestation 

in Bolivia intensified when the economic model shifted to a more liberal one. 

Fauna 

The literature also addresses the loss of animal biodiversity due to advancing agricultural 

frontiers. Koh and Wilcove (2008) found that oil palm cultivation reduced bird and butterfly 

populations in Malaysia and Indonesia. Mastrangelo and Gavin (2012) reported fewer bird species 

in cattle production areas of the Argentinian Chaco compared to intact forests. 
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Some studies documented animal migrations due to agricultural expansion. Umetsu and 

Pardini (2007) found that native vegetation destruction in Brazil's Atlantic Forest increased 

invasive species. Athreya et al. (2013) noted that intensive agriculture in India led to large wild 

carnivores moving into human-inhabited areas. 

Air 

To assess atmospheric impacts, researchers quantified pollutant emissions from intensive 

agriculture and simulated pollution scenarios. Baumann et al. (2017) found that agricultural 

intensification decimated 20% of the Chaco Forest between 1985 and 2013, causing significant 

carbon emissions. Miettinen et al. (2012) reported that peatland devastation for oil palm cultivation 

in Malaysia and Indonesia emitted 230310 Mt CO2e. Carlson et al. (2013) projected that oil palm 

production in Kalimantan, Indonesia, would contribute to 20% of the country's CO2 emissions by 

2020. 

Water 

Only one study discussed the impact of agricultural frontiers on water. Raquel et al. (2007) 

used Game Theory to analyze optimal decisions between increasing agricultural production using 

irrigation and minimizing environmental impacts on groundwater in Mexico's Alto Rio Lerma 

Irrigation District. They concluded that irrigation significantly decreases groundwater, and optimal 

decisions depend on the relative importance of irrigation and overall water use. For environmental 

sustainability, the Pareto optimum would extract about 370 million cubic meters of water per year. 

 

2.4.2 Socio-Economic-Ecological Focus 

To analyze the literature with a Socio-Economic-Ecological focus, the authors presented 

data on the environmental impacts caused by agricultural frontiers, with an emphasis on listing 

possible solutions for preservation and regeneration, in addition to examining how socioeconomic 

factors can influence environmental degradation. The discussion first addresses potential solutions 

to environmental issues and then considers the impact of socioeconomic aspects. 

In their study on Mexico, Ellis and Porter-Bolland (2008) highlighted the importance of 

protected areas for forest preservation, noting that deforestation was more prevalent in regions 

with community-based forest management compared to protected areas. Similarly, Volante et al. 

(2016) examined the Argentine Chaco, revealing that forest laws like the "Native Forest Law" were 
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insufficient to curb deforestation and regional transformation. They suggested that changes in law 

enforcement strategies or the introduction of alternative incentives, such as the EU's biofuel import 

standards, might help reverse this trend. 

Understanding regional heterogeneity is crucial for adopting environmental protection 

measures in emerging countries. Pacheco et al. (2010) noted that while Reducing Emissions from 

Deforestation and Forest Degradation (REDD) is vital for conserving tropical forests in Latin 

America, socioeconomic and land use heterogeneity complicates policy implementation. Nolte et 

al. (2017) discussed South American biomes, stating that the Cerrado, Chaco, and Chiquitano 

regions, despite having lower carbon stocks and biodiversity, are agriculturally significant with 

numerous private properties and better compliance with forestry regulations than the Amazon. 

Policies to combat deforestation must consider the specific characteristics of each agricultural 

frontier. Gasparri and De Waroux (2015) emphasized the need for models that analyze the coupling 

of geographic locations and productive sectors due to the significant role of soybean and cattle 

production in driving deforestation in South America. 

In Brazil, much of the literature focuses on the Amazon Rainforest. Suggested solutions 

for forest preservation and regeneration include creating ecological parks, preserving indigenous 

reserves (Nepstad et al., 2006), enforcing the Forest Code to prevent deforestation (Verburg et al., 

2014), regulating the use of fire by landowners, enhancing environmental performance in 

commodity markets, and incentivizing carbon markets (Nepstad et al., 2008). Additionally, Nobre 

et al. (2016) recommended promoting sustainable land use and climate change mitigation through 

biological, digital, and material technologies. 

Studies in Southeast Asia (Indonesia and Malaysia) identified the main drivers of palm oil 

cultivation and proposed solutions to mitigate the resulting environmental issues. McCarthy and 

Cramb (2009) found that the shift to neoliberalism facilitated forest devastation by agricultural 

frontiers, replacing subsistence farming with mechanized agriculture. Busch et al. (2015) argued 

that reducing agricultural concessions and promoting carbon emission reduction policies are 

crucial to reversing environmental degradation in Indonesia.  

Carlson et al. (2018) added that RSPO certification, while not a panacea, significantly 

reduced deforestation in Indonesia from 2001 to 2015. Wilcove and Koh (2010) discussed 

Southeast Asia, concluding that "boycott" policies are ineffective for this region, and that 

promoting competitiveness through incentives like REDD would be more successful. Singh (2000) 



24 
 

found that the Green Revolution's intensive agricultural production in India led to soil degradation 

and water pollution, suggesting that increasing and diversifying biomass productivity, moisture 

conservation, nutrient management, and land use planning are essential for restoring degraded 

areas. 

Regarding the influence of socioeconomic factors, several studies have shown that 

environmental degradation rates in emerging countries decrease with socioeconomic development, 

whether intellectual or financial. For instance, Rodrigues et al. (2009) demonstrated that literacy, 

life expectancy, and living standards inversely correlate with environmental degradation, 

supporting the Environmental Kuznets Curve hypothesis. Schiesari et al. (2013) found that small-

scale farmers with higher education and technical support tend to use fewer pesticides and less 

harmful resources. 

Deng and Gibson (2019) studied China's Shandong region, finding that land productivity 

is concentrated in cities far from economic centers, but eco-efficiency is higher in developed cities 

and eco-tourism areas. Conversely, Babigumira et al. (2014) concluded that wealthier farmers in 

24 emerging countries tend to deforest more than poorer smallholder farmers lacking market 

knowledge. 

Beyond the direct link between environmental degradation and socioeconomic levels, other 

studies highlight different ways socioeconomic factors affect the relationship between agricultural 

frontiers and the environment. Meyfroidt et al. (2016) argued that young labor and an increasing 

rural population are essential for recultivating abandoned agricultural land in Russia and Ukraine, 

stimulating new agricultural frontiers. Le Polain de Waroux et al. (2018) found that the expansion 

of agricultural frontiers in the South American Chaco responds well to new technologies, 

infrastructure, and rising prices. However, these frontiers' dynamics are shaped by abnormal 

economic rents and a limited number of actors (commodity producers, speculators, rentiers) 

influencing the process. 
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2.5 Research Agenda 

 

Brazil is considered the "home country" for discussions on the relationship between 

intensive agricultural production and the environment, with literature primarily focusing on the 

Amazon rainforest. These studies have noted that several measures to combat environmental 

degradation, such as expanding protected areas, implementing national and foreign financial 

incentives, and enacting national public policies, have been in place for some time. 

However, there is a lack of studies measuring the effectiveness of these measures, either 

individually or collectively, or their impact across the vast expanse of the Amazon, which spans 

nine Brazilian states and six other countries. Furthermore, other crucial Brazilian biomes, like the 

Cerrado, Atlantic Forest, Caatinga, Pampas, and Pantanal, have been largely overlooked. The 

Cerrado, for instance, is Brazil's most recent agricultural frontier (Matopiba) and warrants special 

attention due to its high deforestation rates, unique biodiversity, and significant natural aquifers. 

Research on Indonesia and Malaysia has highlighted the numerous environmental impacts 

of intensive palm oil production, with studies already measuring the effectiveness of certification 

schemes like the RSPO. Despite these efforts and the ongoing destruction of tropical forests, palm 

oil production and associated degradation continue unabated. Pirker et al. (2016) noted that only 

17% of the world's suitable area remains for palm oil expansion, and these areas are increasingly 

inaccessible. Future research should identify these areas and assess whether soil degradation and 

deforestation trends align with palm oil expansion. There is also a need to investigate potential 

desertification processes in Indonesia and Malaysia and explore reversal strategies if such trends 

are identified. 

In populous countries like India and China, the impacts of agricultural frontiers on the 

environment are closely linked to potential land and food scarcity. Balancing cultivation and food 

production needs with space for growing populations is critical. Research should focus on meeting 

current food demands with minimal environmental impact, emphasizing soil management and the 

restoration of degraded areas. Additionally, studies should explore whether intensive production 

and degraded areas drive migration, investigating how changes in soil and deforestation stimulate 

population movements in these countries. 

Emerging countries are heterogeneous but share a strong political-structural dependence, 

influenced by internal and external stimuli. Agricultural production and environmental policies are 

often driven by markets and governments. Research should examine how different forms of 
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government in emerging countries impact the relationship between agricultural frontiers and the 

environment. Is there a consensus on these measures? Are they spatially dependent or merely tied 

to local governments? Moreover, the influence of foreign markets on agricultural production and 

preservation policies in emerging countries remains underexplored. Are these influences driven by 

internal markets or external forces? Do they lean towards an Extended Industrial Agriculture bias 

or a Socio-Economic-Ecological Focus? 

While promoting agricultural production is essential for economic growth in emerging 

countries, it is equally important to understand and mitigate the environmental impacts of 

agricultural frontier expansion. Can sustainable development be achieved in countries where 

agricultural production is the main economic driver? To what extent can the environment sustain 

this expansion? These are critical questions to address, requiring a balance between agricultural 

production and environmental impact, potentially through multi-component forecasting models 

like System Dynamics Modeling. This approach could help develop measures to balance intensive 

agricultural production with environmental sustainability more effectively. 

 

Summary 

This chapter used a Systematic Literature Review to analyze key research on the impact of 

agricultural frontiers on the environment in emerging countries, discussing theories on 

environmental and agricultural transformations over the past thirty years (1993-2022).  

Although the literature on agricultural frontiers and the environment in emerging countries 

adopts diverse theories and methodologies, most studies focus on measuring the impact of 

agriculture on natural resources, which I call the Expanded Industrial Agriculture Approach, and 

on examining how local socioeconomic factors and public policies influence the population's 

relationship with agricultural frontiers and the environment, defined as the Socioeconomic-

Ecological Approach. These two definitions of approaches are currently the best way to 

systematize the literature on agricultural frontiers and the environment in emerging countries. 

In studies with an Expanded Industrial Agriculture Focus, intensive agriculture is shown to 

degrade various natural resources. However, discussions primarily address environmental impacts 

on flora (deforestation rates), air (pollutant gas measurements), and land use changes, indicating a 

need for more research on the impacts of agricultural production on water resources. Articles with 

a Socio-Economic-Ecological Focus propose solutions to environmental problems in emerging 
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countries, such as creating ecological parks, expanding forest protection areas, implementing 

region-specific public policies, enforcing stricter environmental laws, and promoting biological, 

digital, and material technologies. Research also shows that socioeconomic aspects like literacy, 

life expectancy, and high living standards tend to reduce environmental degradation rates. 

The data also revealed that most studies on the agricultural frontier and the environment 

are concentrated in Brazil, followed by studies on South America and the island regions of 

Indonesia and Malaysia. It was then observed that there is a lack of research on European 

economies in transition, emerging African countries, and Russia, as well as on the agri-

environmental impact of the high demand for food in populous countries such as India and China.  

Studies on Brazil have focused mainly on the Amazon Rainforest, leaving a significant gap 

in the literature on other important Brazilian biomes, such as the Cerrado, the Atlantic Forest, the 

Caatinga, the Pampas, and the Pantanal. It was observed that research on the Brazilian Cerrado or 

the Matopiba region in Brazil is still mainly concentrated among Brazilian researchers and is 

written in Portuguese, since, with the adoption of the English language exclusion criterion, these 

studies had few samples. 

Future research on agricultural frontiers and the environment should not only propose 

solutions but also measure the effectiveness of these proposals in reducing/reversing degradation 

in emerging countries, considering market influences, government types, and regional 

heterogeneity. Research should adopt dynamic forecasting models to balance intensive agricultural 

production with environmental impacts. Furthermore, studies should address recent topics like 

agricultural digitalization, migration of agro-industrial poles, nanotechnology, and the circular 

economy. 
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3. Chapter 3: Matopiba: Brazil's Newest Agricultural Frontier 

 

Introduction 

This chapter is descriptive and informative and aims to summarize the socio-economic and 

environmental characteristics of the Matopiba region in Brazil. The analysis was based on data 

provided by Brazilian institutes and projects, namely: Empresa Brasileira de Pesquisa 

Agropecuária (EMBRAPA)5, Instituto Brasileiro de Geografia e Estatística (IBGE)6, Instituto de 

Pesquisa Econômica Aplicada do Brasil (IPEA)7, Sistema de Estimativa de Emissões de Gases de 

Efeito Estufa (SEEG)8 and MAPBiomas9 Brazil.  

The first section gives an overview of the socio-economic situation of Matopiba, mainly 

presenting the delimitation of the region and the evolution of GDP, agricultural production, and 

land cover. The second section characterizes the environmental aspects of the region (climate, 

relief, geology, hydrography), as well as presents an overview of the main environmental impacts 

suffered in recent years.  

 

3.1 Developmental Aspects 

 

With an area of around 73 million hectares and a population of 6.2 million (IBGE, 2022), 

Matopiba is a region in the north and northeast of Brazil that encompasses four states: Maranhão 

(33% of the total area of this region), Tocantins (38%), Piauí (11%) and Bahia (18%). In the 

geographical delimitation proposed by EMBRAPA (used by the country's main institutes), the 

region comprises 337 municipalities divided into 31 geographical micro-regions10. 

  

 
5 Public research company linked to the Brazilian Ministry of Agriculture, Livestock and Supply. 
6 A public institute of the Brazilian federal administration. Created in 1934, it is the main provider of geographical 

and statistical information in Brazil. 
7 A federal public foundation linked to Brazil's Ministry of Planning and Budget. It promotes advanced economic 

research in the country. 
8 Online platform developed by the Observatório do Clima initiative that provides data on GHG emissions throughout 

Brazil. 
9 The project is an initiative of Brazilian civil society Observatório do Clima, co-created and developed by a multi-

institutional network involving universities, NGOs and technology companies with the aim of mapping land use and 

land cover in Brazil every year and monitoring changes in the territory. 
10 The list of the 337 municipalities and 31 geographic microregions of Matopiba can be found in Table A1 at 

Appendix A. 
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Figure 3: Geographical Location Matopiba Region - Brazil 

 
Source: Salvador (2014). 

 

The region encompasses around 324,326 agricultural establishments occupying an area of 

approximately 36 million ha, as well as 781 agrarian reform settlements and quilombola areas 

(approximately 14 million ha), 46 ecological conservation units (8.4 million ha), and 35 indigenous 

lands (4.2 million ha) (Miranda, 2015). 

According to the Regional, Urban and Environmental Bulletin developed by IPEA (Pereira, 

Porcionato, & Castro, 2018), Matopiba has been undergoing socio-economic transformations 

because of the expansion of intensive agriculture, in which social indicators, such as the Municipal 

Human Development Index (MHDI) and the Social Vulnerability Index (SVI), have shown trends 

of social improvement in Matopiba since the 2000s. This progress is directly related to 

improvements in educational indicators (a reduction in the illiteracy rate, an increase in the high 

school attendance rate, and an increase in the average number of years of study in the region), as 

well as associated with improvements in urban infrastructure (an increase in water supply 

networks, garbage collection, and sewage services). 

Data from the Report on the Personal Distribution of Income and Wealth of the Brazilian 

Population (BRASIL, 2016) shows that there was a decrease in the Gini index in Matopiba in 2010 

compared to 2000. The reduction in income inequality was observed in 250 municipalities (74% 



30 
 

of the region). This improvement is due to the implementation of public policies aimed at 

redistributing income, such as the Bolsa Família Program11 and the Continuous Cash Benefit12 

(Pereira, Porcionato, & Castro, 2018).  

 

Gross Domestic Product (GDP) 

Between 2000 and 2021, the Matopiba region had a gross GDP growth rate of 1,419%, 

going from 10.6 billion reais in 2000 to 150.9 billion reais in 2021. Taking taxes into account, this 

growth is 1460%, from a current GDP of 11.3 billion in 2000 to 166 billion reais in 2021. The 

region's great economic growth has been driven mainly by agriculture and the goods and services 

sector. 

Data from IBGE (2022) show that, although the state of Tocantins has the largest number 

of municipalities in Matopiba, the state of Maranhão had the largest share of the region's total GDP 

in 2021, followed by Tocantins and Bahia. Piauí, which has the fewest municipalities, is also the 

smallest in terms of its share of the region's GDP. 

Based on the general GDP data for Matopiba, it is also worth analyzing the gross value 

added by sectors of the economy: agriculture, industry, services, and administration (defense, 

public education, health, and social security). Data from IBGE (2022) also shows that the 

agricultural sector contributed 31% of the total added value in 2021 in the region, while industry 

contributed 14%, the services sector 33%, and the administration sector 22%. 

Although the agricultural sector will account for 31% of the total value added in 2021, it is 

important to consider that the services sector has various activities related to agriculture, such as 

transportation, storage, logistics, trade, and technical assistance, among others, which justifies the 

significant value of the services sector (Pereira, Porcionato, & Castro, 2018). 

In addition, the relative share of the agricultural sector was the highest among the economic 

sectors compared to 2000 (an increase of 1716%). This increase was greater than the growth rate 

 
11 It is a cash transfer program run by the Brazilian federal government and linked to the Ministry of Development 

and Social Assistance, Family and Fight against Hunger. As well as guaranteeing income to families living in poverty, 

the PBF seeks to integrate public policies, strengthening families' access to basic rights such as health, education and 

social assistance. 
12 It is a social assistance benefit in Brazil, provided by the National Social Security Institute, which guarantees a 

minimum monthly wage to people with disabilities who can prove that they do not have the means to provide for 

themselves or their family. 
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of total GDP over the same period. As illustrated in Graph 3, agricultural GDP rose from 2.7 billion 

in 2000 (26% of the total aggregate) to 46.7 billion reais in 2021 (31% of the total aggregate).  

Considered the country's most recent agricultural frontier, the literature corroborates these 

figures and lists the agricultural sector as the main factor in Matopiba's economic development 

(De Oliveira, Raposo, & Garcia 2024; Dos Reis et al., 2024; Loayza et al., 2023; Nunes, Campelo 

Filho, & Benini, 2023; Batista et al., 2022; De Oliveira, Dörner, & Schneider, 2020; Ribeiro et al., 

2020; Widmarck, 2020; De Araújo et al., 2019; Bragança, 2018; Pereira, Castro, & Porcionato, 

2018). 

 

Graph 3: Contribution of Economic Sectors to the GDP of the Matopiba Region (R$) 

 
Source: Own Elaboration, with data from IBGE (2022). 

 

The GDP of services grew from 4.1 billion in 2000 to 50.5 billion in 2021. Despite a growth 

of 1230%, there was a decrease in the contribution of the services GDP to the total value added, 

from a contribution of 39% in 2000 to 33% in 2021. 

The industrial sector showed the lowest growth rate compared to 2000 (755%), which 

meant that the industrial sector's relative share of the total value added grew by just 1%, from 13% 

in 2000 to 14% in 2021. These figures indicate that the industrial sector is losing ground in 

Matopiba. 
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There was also an increase in GDP from administration, from 2.4 billion in 2000 to 33.1 

billion in 2021. Despite a small decrease in the contribution to total value added (from 23% in 

2000 to 22% in 2021), the figures represent a growth of 1356% in public investment and social 

security in the region. 

 

Agricultural Production 

Until the first half of the 20th century, the Matopiba region was covered by pastures and 

native vegetation (Cerrado and Caatinga) and, as a result, agriculture was considered unproductive. 

However, since 2005, there has been an expansion of agricultural activity in the region, with the 

emergence of large monoculture farms that use mechanized technologies for large-scale 

production, mainly for the export of soy, corn, and cotton (BRASIL, 2021). This expansion was 

due to the region's flat topography and the low cost of land compared to the consolidated areas of 

central-southern Brazil. 

Agricultural production in Matopiba grew by 387% between 2000 and 2021, from 8.4 

million tons in 2000 to 32.5 million tons in 2021. As Graph 4 shows, this high growth was mainly 

due to soybean and corn production.  

 

Graph 4: Agricultural Production in Matopiba Region (t) 

 
Source: Own Elaboration, with data from IBGE (2022). 
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With an increase of 725%, soybean production went from 2.2 million tons in 2000 to 16 

million tons in 2021. This growth has made soybean the main agricultural crop in Matopiba, 

accounting for almost 50% of all agricultural production in the region. In addition, Matopiba is 

already responsible for almost 15% of Brazil's total soybean production. 

Corn production increased from 1.3 million tons in 2000 to 7.4 million tons in 2021 (an 

increase of 560%). Currently, corn production represents 22% of Matopiba's total production and, 

together with soybeans, is the region's main agricultural crop (71% of total agricultural 

production). 

Sugarcane production is the third largest in Matopiba. It went from 1.7 million tons 

produced in 2000 to almost 5.3 million tons in 2021, which represents an increase of 310% over 

the period. This increase makes sugarcane production responsible for 16% of the region's total 

agricultural production.  

Cotton production grew the most between 2000 and 2021 in Matopiba (1072%). Production 

went from 124,000 tons in 2000 to 1.3 million (t) in 2021. However, despite this enormous growth, 

cotton represents only 4% of the region's total production.  

Considered one of Matopiba's main crops, rice production has been declining since 2000. 

It went from 1.4 million tons in 2000 to 912,000 in 2010 and 851,000 in 2021. This decline is 

mainly associated with the replacement of rice production by soybeans and corn.  

In addition to large-scale grain production, the region also has room for livestock and fruit, 

roots, and tubers, the main ones being cassava, beans, sugar cane, watermelon, and pineapple. 

The Brazilian Ministry of Agriculture says that a large part of this increase in grain 

productivity (mainly soybean) is due to the technologies currently used in Matopiba, such as the 

use of hybrids and cultivars adapted to the soil and climate conditions, conservation management 

systems (no-till farming and Crop-Livestock-Forest Integration), as well as the efficient use of 

pesticides, correctives, and fertilizers.  

The states of Bahia and Tocantins are currently the largest agricultural producers in the 

region. Production in Bahia was more than 10.2 million tons, with the micro-regions of Barreiras 

and Santa Maria da Vitória being the most important. A noteworthy fact is that the municipalities 

of the Barreiras micro-region alone produced around 7.9 million tons, 5.5 million tons of which 

were soybeans, making this micro-region the largest agricultural producer in Matopiba.  
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The state of Tocantins produced just over 9.1 million tons in 2021, with the micro-regions 

of Miracema do Tocantins, Rio Formoso and Porto Nacional standing out. The soybean crop was 

also the largest producer in Tocantins (3.7 million tons), followed by corn production 

(approximately 2 million tons). 

The municipalities of Maranhão produced around 8.6 million tons in 2021, with the micro-

regions of Balsas Gerais and Chapadas das Mangabeiras being the biggest producers, with 

soybeans and corn also standing out. Finally, the state of Piauí produced 4.6 million tons, mainly 

driven by the municipalities in the Alto Parnaíba Piauiense and Alto Médio Gurguéia micro-

regions. 

 

Land Cover and Use 

The progress of farming in Matopiba can also be seen when looking at the history of land 

cover in the region. Farming areas jumped from 16 million hectares in 2000 to 25.2 million in 

2021. As illustrated in Graph 5, this increase was due to the intensive growth of pasture and 

agricultural areas.  

 

Graph 5: Distribution of Farming Land Use in Matopiba Region (ha) 

 
Source: Own Elaboration, with data from IBGE (2022). 
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Pastureland increased by another 5 million hectares between 2000 and 2021 in Matopiba. 

It went from an area of 10.2 million hectares in 2000 to 15.2 million hectares in 2021, which 

represents an increase of 149%. The area devoted to agriculture grew by 381% in the same period, 

from 1.5 million hectares in 2000 to over 5.8 million in 2021, mainly due to the large production 

of soybeans and corn in the region (this will be discussed later in this session). 

Despite a 473% increase between 2000 and 2021, forest plantation areas occupied only 2.5 

million hectares in 2021. Also known as silviculture, these areas grow tree species to produce 

wood, resins, and essences, among other things. 

Looking at the annual average, from 2010 to 2021, the area for farming grew by an average 

of 478.3 thousand hectares per year, with 203 thousand hectares on average for agriculture, 184 

thousand for pasture, 79 thousand for mosaic areas, and 12.1 thousand hectares on average per 

year for forest plantations.  

Due to the wide variety of crops grown in Matopiba and the fact that it currently demands 

the most land, a more in-depth analysis of the distribution of agricultural land use in the region 

was deemed necessary. With an area of 4.4 million hectares, soybeans would occupy 75% of all 

agricultural land in Matopiba by 2021, but this wasn't always the case. 

 

Graph 6: Distribution of Agricultural Land Use in Matopiba Region (ha) 

 
Source: Own Elaboration, with data from IBGE (2022). 
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In 2000, soybean production occupied an area of just over 68,000 hectares. However, due 

to public policies and intense technological modernization, soy has become the most widely grown 

grain in Matopiba and, by 2010, it has already occupied an area of more than 2 million hectares. 

Between 2000 and 2021, there was a 646% increase in soybean area in the region. 

The area planted with corn grew by 226% in the same period, from 48,8027 hectares in 

2000 to 1.1 million in 2021. As a result, corn production occupies 19% of the agricultural area. 

The increase in agricultural area can also be seen in other temporary crops (cotton, rice, 

sugar cane, among others), but they only represent 5% of the total area. Finally, the area of 

permanent crops (coffee, apples, pears, grapes, mangoes, oranges, among others) grew by 180% 

between 2000 and 2021 but represents only 1% of the total agricultural area in the region. 

 

3.2 Environmental Aspects 

 

Characterization 

One of the criteria used in Matopiba's territorial delimitation was the area of the region's 

existing biomes. The Cerrado is the predominant biome, representing around 67 million hectares 

(91% of the territory). The region also has around 5.4 million hectares of the Amazon Biome 

(7.3%) and 1.2 million hectares of the Caatinga Biome (1.7%).  

Due to the predominance of the Cerrado Biome, Matopiba has ecosystems with forest 

(predominantly tree species), savannah, and grassland formations. Savannahs represent 61% of 

Matopiba's natural formations, forests comprise around 32%, and grassland formations around 7%. 

(Oliveira, 2007). Figure 4 shows the territorial delimitation of Matopiba by biome area, in which 

the Cerrado is represented by orange, the Amazon Biome by green, and the Caatinga by yellow. 

The relief of the region is very diverse, with 19 major morphological groups. In the larger 

area, broad, gentle hills predominate, which are areas characterized by degradation processes in 

any lithology. The domain of plateaus and plateaus (the second largest in the area) is characterized 

by relief of degradation in sedimentary rocks. However, the region also has flattened surfaces, 

river plains, valleys, hills, and low mountains, among other features. 

Diversity is also seen in the soil classes in Matopiba, where there are 12 different classes, 

with latosols, neosols, and plinthosols being the dominant classes. Latosols, the predominant soil 

in the region, cover an area of around 28 million hectares and are characterized by intense 
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weathering, but with good permeability and high porosity, i.e. favorable physical characteristics 

for agricultural use. 

 

Figure 4: Territorial Delimitation of Matopiba by Biome Areas 

 
Source: EMBRAPA (Miranda et al. 2014). 

 

Matopiba's climate is characterized by Tropical Central Brazil (53%), Tropical Equatorial 

Zone (44%), and Equatorial (3%) climate zones. Due to the region's large territorial extension, the 

semi-humid tropical climate predominates in the central extension of the territory, with average 

temperatures above 18°C throughout the year and dry spells of between 4 and 5 months; while the 

semi-arid climate predominates on the eastern edge of the region, with high temperatures and low 

humidity and rainfall (6 dry months) (Oliveira, 2007). 

In addition to the favorable climate and soils for agricultural production, Matopiba is a 

region with an extreme abundance of fresh water, in which four of Brazil's main hydrographic 

basins are found, namely: The Tocantins-Araguaia River Basin, the Parnaíba River Basin, the 

Atlantic Basin in its North-Northeast stretch, and the São Francisco River Basin.  
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Figure 5 shows the territorial distribution of Matopiba's river basins. The Tocantins-

Araguaia River basin is shown in blue, the Parnaíba River basin in yellow, the Atlantic basin in 

green, and the São Francisco River basin in purple. 

 

Figure 5: Distribution of Matopiba's River Basins 

 
Source: EMBRAPA (Miranda et al. 2014). 

 

The basins of the Tocantins rivers, the Atlantic Basin in its North-Northeast section, and 

the São Francisco are home to the main rivers in the region and some of the most important in 

Brazil: Araguaia, Gurupi, Itapicuru, Mearim, Parnaíba, Pindaré, São Francisco and Tocantins. 

 

Environmental Impacts 

In addition to an enormous animal biodiversity, Matopiba encompasses a diversity of 

endemic plants of global importance. However, around 12 million hectares of native vegetation 

were lost between 2000 and 2022.  
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As illustrated in Graph 7, native vegetation covered an area of around 53 million hectares 

in 2000 in Matopiba, while in 2022 this area was 41 million. Around 502,000 hectares of native 

vegetation are cleared every year in the region. 

 

Graph 7: Native Vegetation Area in Matopiba Region (ha) 

 
Source: Own Elaboration, with data from MapBiomas (2023). 

 

Data from MapBiomas (2023) shows that farming was responsible for 99.5% of the 

conversion of native vegetation between 2000 and 2022. Other factors, such as mining, urbanized 

areas, and aquaculture, had little influence, together accounting for just 0.5%.   

The conversion of vegetation into pasture amounted to 5.5 million hectares, which 

represents 50% of all vegetation converted in Matopiba between 2000 and 2022. Agriculture 

comes next, with a converted area of 3.45 million (31% of the total conversion).  

The conversion of vegetation to agriculture and pasture may be even greater, due to the 

mosaic areas. The conversion of native vegetation to mosaic areas amounted to around 2 million 

hectares (18% of the total conversion). Finally, the conversion of vegetation to forestry, also called 

Forest Plantation, amounted to just 150,000 hectares (1%) between 2000 and 2022. 

As shown in Graph 8, the annual increase in the area under farming (farming land demand) 

shows practically the same trend as deforestation in Matopiba, which once again demonstrates that 

agriculture may be the main cause of the suppression of native vegetation in the region.  
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Graph 8: Annual Trends in Farming Land Demand and Deforestation in Matopiba (ha) 

 
Source: Own Elaboration, with data from MapBiomas (2023). 

 

The small excess deforestation to the farming land demand, according to a report by the 

Climate Observatory (2024), is due to the current accuracy of deforestation detection systems, as 

well as the fact that deforestation in Matopiba is spreading to Legal Reserves and Permanent 

Protection Areas (places that couldn't even be touched). 

In addition to the deforestation of native vegetation, the rates of carbon dioxide emissions 

from farming have also been increasing in Matopiba. Although the total rate of CO2 emissions is 

inconstant and decreased between 2013 and 2019, data from the Gas Emission Estimation System 

- Brazil (SEEG, 2020) shows that CO2 emissions from farming increased by around 15 million 

tons (GWP-AR5) between 2000 and 2019. 

As seen in Graph 9, CO2 emissions from farming increased from 25.7 million tons in 2000 

to 40.6 million in 2019. Total CO2 emissions in 2019 were just over 85.7 million tons, which means 

that farming is responsible for 47% of total CO2 emissions in the region. 

In addition, the average annual CO2 emissions from farming have been growing. For the 

period from 2000 to 2019, the average was 34.3 million tons per year. On the other hand, 

considering a more recent period (2015 to 2019), farming emits more than 39.2 million tons per 

year in the region. 
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Graph 9: Carbon Dioxide Emissions in Matopiba Region (tons GWP-AR5) 

 
Source: Own Elaboration, with data from SEEG (2020). 

 

The literature corroborates these figures and shows that the expansion of agribusiness in 

Matopiba is causing major environmental impacts in the region (Araújo et al., 2024; De Sampaio 

Melo, Júnior, & de Espindola, 2024; Da Silva Arruda et al., 2024; Siqueira et al., 2024; Agostinho 

et al., 2023; De Oliveira Aparecido et al., 2023; De Souza et al., 2023; Ferreira, 2023; Santos et 

al., 2023; Ferreira-Paiva et al., 2022; Nepomoceno, & Carniatto, 2022; Polizel et al., 2021; 

Schneider, Biedzicki de Marques, & Peres, 2021; Dos Reis et al., 2020; De Barros, & Stege, 2019; 

Barbirato, & Souza, 2018; Matricardi et al., 2018; Salvador, & de Brito, 2018). 

 

Summary  

This chapter has described the socioeconomic and environmental characteristics of the 

Matopiba region, using available academic literature and data provided by Brazilian institutes and 

projects.  

In addition to outlining the region, the first part of this chapter analyzed the evolution of 

GDP, agricultural production, and land cover. A comparative analysis showed that Matopiba has 

been undergoing socio-economic transformations due to the expansion of intensive farming. The 

region's GDP had a gross GDP growth rate of 1.419% between 2000 and 2021, driven mainly by 

agriculture and the goods and services sector. Agricultural production rose from 8.4 million tons 
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in 2000 to 32.5 million tons in 2021, mainly due to the production of soybeans (50% of total 

agricultural production) and corn (21% of total agricultural production). Farming areas jumped 

from 16 million hectares in 2000 to 25.2 million in 2021.   

The second section characterized the environmental aspects of the region, showing that 

Matopiba has an abundance of fresh water and a favorable climate and soils for agricultural 

production. This section also presented the main environmental impacts suffered in recent years 

in the region, where around 12 million hectares of native vegetation were lost between 2000 and 

2022 (with agriculture being responsible for 99.5% of this conversion), as well as CO2 emissions 

from agriculture increasing by around 15 million tons between 2000 and 2019. 
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4. Chapter 4: Verification of Environmental Conditions in Matopiba 

 

Introduction 

The descriptive statistics presented in Chapter 3 showed that Matopiba's agricultural 

production and GDP are growing intensely, while at the same time, there is an increase in the 

deforestation of native vegetation and agricultural CO2 rates in the region. Therefore, this chapter 

aims to use machine learning techniques to develop two statistical models to analyze the 

environmental conditions generated by the agricultural frontier in the region. 

Canonical Correlation Analysis (CCA) was used to verify the relationship and magnitude 

of dependence between environmental impacts, economic growth, and agricultural production in 

Matopiba. This statistical technique of the machine learning approach was chosen because of the 

possibility of finding a linear combination in each set of variables that maximizes the relationship 

between one or more dependent and independent variables.  

The first section of this chapter describes the machine learning approach, and the entire 

methodological process involved in the analyses (model specification, results interpretation 

schedule). Section 2 presents the results of the canonical analysis, which first discusses the 

relationship between environmental impacts and economic growth and then the relationship 

between environmental impacts and agricultural production. 

 

4.1 The Machine Learning Method  

 

Machine Learning (ML) is a subfield of artificial intelligence that focuses on creating 

systems that learn or improve data performance based on the very data they consume. ML uses 

techniques that are an advance on traditional multivariate statistical methods, as it offers insights 

that are essential for creating predictive models using many artificial intelligence algorithms 

(Silveira et al., 2023). 

The field of ML is broad and encompasses various statistical and computational techniques 

used to analyze and interpret database patterns, especially in multivariate data analysis and 

probabilistic inference. Techniques that aim to analyze the degree of relationship between variables 

by grouping and/or discriminating profiles, such as MANOVA, canonical correlation analysis, and 

factor analysis, are integral parts of the ML toolkit (Murphy, 2012). 
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ML techniques have been used in studies that address environmental impacts (Liu, Wang 

and Fang, 2024; Shoushtari, Zadeh and Daghighi, 2024; Prioux et al., 2023; Rao et al., 2023; Abu 

El-Magd, Maged and Farhat, 2022; Asha et al., 2022; Gao and Mavris, 2022; Yang et al., 2022; 

Algren, Fisher and Landis, 2021; Brownlee et al., 2021; Harding and Lamarche, 2021; Abdella et 

al., 2020; Colla et al., 2020; Garre, Ruiz and Hontoria, 2020; Storm, Baylis and Heckelei, 2020; 

D'Amico et al., 2019; Lacoste et al., 2019; Cordier et al., 2018) and agricultural production (Attri, 

Awasthi and Sharma, 2024; Liu et al., 2024; Rane et al., 2024; Amini and Rahmani, 2023; 

Pallathadka et al., 2023; Akhter and Sofi, 2022; Cravero et al., 2022; Wani et al., 2022; Benos et 

al., 2021; Meshram et al., 2021; Pant et al., 2021; Hamrani, Akbarzadeh and Madramootoo, 2020; 

Reddy et al., 2020; Sharma et al., 2020; Storm, Baylis and Heckelei, 2020; Rehman et al., 2019; 

Balducci, Impedovo and Pirlo, 2018; Liakos et al., 2018). 

This chapter will use canonical correlation analysis (CCA) with a machine learning 

approach. CCA is the general multivariate analysis model that uses metric and non-metric variables 

as dependent and independent variables. While multiple regression analysis involves one metric 

dependent variable and several independent variables, canonical correlation analysis relates a set 

of several dependent variables Y (metric and non-metric) to a set of several independent variables 

X (metric and non-metric) (Hair et al., 2009).  

 

Y1+ Y2+ ⋯+ Yp = X1+ X2+ ⋯+ Xk 

 

CCA finds a linear combination in each set of variables that maximizes the relationship 

between the dependent and independent variables. Each linear combination is called a canonical 

statistical variable (latent variable), which represents the weighted sum of the variables that make 

up the respective set of variables. Thus, the two linear combinations must produce the maximum 

possible correlation between the latent variables (hence the name Canonical Correlation) (Ho, 

2013; Sherry and Henson, 2005). 

The general CCA model is described in the equation: 

 

∝1Y1+ ∝2Y2+ ⋯+ ∝pYp = β1 X1+β2 X2+ ⋯+ βn Xn 
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Where: 

Y1, Y2, ... Yp are the canonical dependent variables, 

X1, X2, ... Xn are the canonical independent variables, 

∝ are the correlation coefficients for each canonical dependent variable of the model, 

β are the correlation coefficients for each canonical independent variable of the model. 

. 

Models Specification  

In this chapter, CCA is used to analyze the two proposed models. Model 1 consists of 

analyzing the canonical correlation between environmental and economic growth variables. The 

analysis will be carried out in two stages: 

1. The relationship of dependence between environmental issues and the economic aggregates 

of GDP is initially verified.  

2. If there is a significant correlation, an attempt is made to identify the relative contribution 

of the economic aggregates to explaining environmental impacts in Matopiba. 

Model 1 is described in the equation: 

 

∝1Y1+ ∝2Y2 = β1 X1 + β2 X2 + β3 X3 

 

Where: 

Y1 represents CO2 Total Emissions, 

Y2 is the Deforestation of Native Vegetation in the region, 

X1 represents Gross Value Added in Agriculture, 

X2 is the Gross Value Added in Industry, 

X3 is the Gross Value Added of Services and Administration, 

∝ are the correlation coefficients for each canonical dependent variable of Model 1, 

β are the correlation coefficients for each canonical independent variable of Model 1. 

Model 1 serves as the basis for proving Hypothesis 3 of this study and provides empirical 

support to answer the following questions: Is there any relationship between the economic 

aggregates and the environmental impacts generated on Matopiba's agricultural frontier? Which 

economic aggregate contributes the most to environmental impacts in the Matopiba region?  
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Model 2, in turn, aims to analyze the canonical correlation between environmental and 

agricultural production variables. The analysis is also carried out in two stages: 

1. Initially, the dependency relationship between environmental variables and the production 

of the main crops in Matopiba is verified. 

2. The aim here is to identify the contribution of each agricultural crop to environmental 

impacts in the region. 

Model 2 is described in the equation: 

 

∝1Y1+ ∝2Y2 = β1 X1 + β2 X2 + β3 X3 + β4 X4 

 

Where: 

Y1 represents CO2 Agricultural Emissions, 

Y2 is the Deforestation of Native Vegetation in the region, 

X1 represents the Quantity Produced of sugar cane, 

X2 is the Quantity Produced of corn, 

X3 is the Quantity Produced of soybeans, 

X4 represents the Quantity Produced of rice, 

∝ are the correlation coefficients for each canonical dependent variable of Model 2, 

β are the correlation coefficients for each canonical independent variable of Model 2. 

Model 2 serves as the basis for proving Hypothesis 4 and provides empirical support to 

answer RQ4: Is agricultural production in Matopiba related to the environmental impacts 

generated in the region? Which crops contribute most to environmental impacts in Matopiba's 

agricultural frontier? 

Table 2 describes the variables that make up Models 1 and 2 of the CCA. The analyses of 

both models used the 31 micro-regions of Matopiba as a sample, shown in Appendix 1 of this 

study. 
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Table 2: Variables that make up Models 1 and 2 of the CCA 

Source: Own Elaboration. 

 

  

Variables Description Source 

Dependent Variables of Model 1 (Environmental Impacts) 

Y1 CO2 Emissions CO2 Total Emissions Gas Emission Estimation System, 

Brazil. 

Y2 Deforestation Area of Deforestation of Native 

Vegetation (Km2) 

National Institute for Space 

Research, Brazil. 

Dependent Variables of Model 2 (Environmental Impacts) 

Y1 CO2 Emissions CO2 Agricultural Emissions Gas Emission Estimation System, 

Brazil. 

Y2 Deforestation Area of Deforestation of Native 

Vegetation (Km2) 

National Institute for Space 

Research, Brazil. 

Independent Variables of Model 1 (GDP Economic Aggregates) 

X1 Agricultural GDP Gross Value Added in Agriculture 

(thousand reais) 

CENSUS - Brazilian Institute of 

Geography and Statistics (IBGE) 

X2 Industrial GDP Gross Value Added in Industry 

(thousand reais) 

CENSUS - Brazilian Institute of 

Geography and Statistics (IBGE) 

X3 Services and 

Administration GDP 

Gross Value Added of Administration 

and Services (thousand reais) 

CENSUS - Brazilian Institute of 

Geography and Statistics (IBGE) 

Independent Variables of Model 2 (Agricultural Production) 

X1 Sugar Cane Quantity Produced of sugar cane 

(tons) 

PAM - Brazilian Institute of 

Geography and Statistics. 

X2 Corn Quantity Produced of corn  

(tons) 

PAM - Brazilian Institute of 

Geography and Statistics. 

X3 Soybeans 

Quantity Produced of soybeans (tons) 

PAM - Brazilian Institute of 

Geography and Statistics. 

X4 Rice Quantity Produced of rice  

(tons) 

PAM - Brazilian Institute of 

Geography and Statistics. 
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In addition to the availability of databases, the environmental variables in Model 1 

(deforestation of native vegetation and total CO2 emissions) were chosen because these are the 

main environmental problems faced in the Matopiba region in recent years. For Model 2, CO2 

emissions exclusive to the agricultural sector were used to determine which of the region's main 

crops (sugar cane, corn, soy, and rice) are the most polluting. The choice of all the variables that 

make up CCA Models 1 and 2 was based on the data and information presented in Chapter 3. 

 

Verification of Assumptions  

CCA requires that the assumptions of linearity, normality, and absence of multicollinearity 

are met. These assumptions will be verified for the variables in the two study models. 

Linearity: canonical correlation is the linear relationship between two or more statistical 

variables. Thus, when statistical variables are related in a non-linear way, this relationship is not 

captured by the CCA. The Scatter Plot will be used to check the linearity of the variables. 

Normality: although the CCA may have non-metric variables, it is advisable to check the 

normality of the metric variables. This assumption has been met by the Central Limit Theory 

(Ellenberg, 2015; Salsburg, 2009). 

Multicollinearity: since multicollinearity affects the technique's ability to isolate the impact 

of the independent variable on the dependent variable, its absence must also be considered in the 

CCA. The absence of multicollinearity will be analyzed using the value of the Variance Inflation 

Factor (VIF). 

 

Results Interpretation Schedule 

The results will be analyzed in two stages. Firstly, the fit of the model will be checked, and 

whether there is a possible correlation between the variables. This process will be carried out using 

significance tests, size effects, and dimension reduction analysis. 

Significance tests: four multivariate significance tests will be analyzed: Pillai's criterion, 

Hoteling's label, Wilks' Lambda, and Roy's GCR. Among these tests, Wilks' lambda (λ) is the most 

widely used due to its more general applicability (Sherry and Henson, 2005). 

Size effects: the results of significance tests can be affected by the size of the sample, i.e. 

when the sample is too small, they may not be observed, while when the sample is too large, there 

may be an overestimation of the relationships. It is therefore also important to interpret the effect 
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size indices, which are determined by subtracting Wilks' λ value from 1. The effect sizes for testing 

the significance of the correlation coefficient, r, are 0.10, 0.30, and 0.50, for small, medium, and 

large, respectively (Cohen, 1988). The effect sizes in the CCA have the same function as the R2 in 

the regression analysis. 

Dimension reduction analysis: another limitation of significance tests is that they do not 

test each canonical function separately, i.e. there is a hierarchy. Therefore, a dimension reduction 

analysis with the complete model (all the roots of the canonical function) is recommended (Sherry 

and Henson, 2005). 

Once the fit of the model and the possible significance of the variables in the model have 

been verified, the canonical analysis is carried out. This step will be carried out using the variance 

explained in each canonical function, as well as interpreting the standardized coefficients 

(canonical weights) and structural correlations (canonical loadings). 

Variance explained in each function: initially, we check how many canonical functions will 

be analyzed in the CCA using the eigenvalues. Eigenvalues are used to evaluate each function in 

isolation, where only functions that explain a reasonable amount of variation between the two sets 

of canonical statistical variables (Sq. Cor > 0.10) should be interpreted. The results of the Squared 

Canonical Correlation (Sq. Cor) should be noted. 

Standardized Coefficients (canonical weights) and Structural Correlations (canonical 

loadings): the magnitude of the standardized coefficients represents their relative contribution to 

the canonical function. However, due to the instability of standardized coefficients, especially in 

the presence of multicollinearity, the interpretation of structural canonical correlations is 

considered more appropriate (Ho, 2013; Sherry and Henson, 2005). Canonical weights and 

canonical loadings will be analyzed together. 

 

4.2 Results of the Canonical Correlation Analysis  

 

This section presents the results of the Canonical Correlation Analysis between 

Environmental Impacts and Economic Growth (Model 1), as well as between Environmental 

Impacts and Agricultural Production (Model 2). For both models, the assumptions of Normality, 

Linearity, and Multicollinearity were checked and met. The verification of the assumptions can be 

found in Appendix C of this dissertation. 
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4.2.1 CCA Between Environmental Impacts and Economic Growth 

The four significance tests showed statistically significant results at a level of 0.05 for 

Model 1, with Wilks' λ = 0.21237 (F = 10.13962; p < 0.01). Thus, the null hypothesis that there is 

no relationship between the two sets of latent variables can be rejected, i.e. there is probably a 

relationship between the economic aggregates of GDP and environmental impacts in Matopiba. 

The effect size of the model was 0.78763, i.e. the proportion of variance shared between 

the two sets of variables in the two canonical functions is 78.76%. Taken together, the results (so 

far) indicate that the entire model is statistically significant and can be considered to have a large 

effect size (> 0.70).  

The results of the dimension reduction analysis also show that the complete model 1 (all 

the roots of the canonical function) is statistically significant (Wilks' λ = 0.21237, F = 10.13962, p 

< 0.01). As a result, the three analyses show that there is a large and significant canonical 

relationship between environmental impacts and the economic aggregates of GDP in the Matopiba 

region.   

The next step was to identify the relative contribution/effect of each GDP aggregate on 

environmental impacts. Analysis of the eigenvalues showed that the relationship between the 

variables is captured by the first and second functions in the canonical model. According to the 

results of the Squared Canonical Correlations (Sq. Cor) presented in Table 3, the first function 

explained 63.91% of the variation within its function (Sq. Cor = 0.63912), and the second function 

explained 41.15% (Sq. Cor = 0.41152) of the variation within its function, which means that they 

should be retained for interpretation.  

 

Table 3: Eigenvalues and Canonical Correlations of Model 1 

Roots Eigenvalues Percentage Cumulative 

Percentage 

Canonical 

Correlations 

Squared Canonical 

correlations (Sq. Cor) 

1 1.77098 71.691 71.691 0.79945 0.63912 

2 0.69930 28.308 100 0.64150 0.41152 

Source: Own Elaboration. 
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The magnitude of the Standardized Canonical Coefficients represents their relative 

contribution to the two canonical functions, but this is particularly unstable in the presence of 

multicollinearity. Although the assumption of the absence of multicollinearity has been met in both 

models, it is safer to interpret the Structural Canonical Correlations (Ho, 2013).  

Looking at the coefficients of the Structural Canonical Correlations in Table 4, 

deforestation was the most significant dependent variable (0.71493) for the first canonical function 

and is directly associated with the Gross Value Added of Agriculture (0.54243). This means that 

an increase in Agricultural GDP positively affects deforestation in the Matopiba region. 

 

Table 4: CCA between Environmental Impacts and Economic Growth 

Source: Own Elaboration. 

 

The second canonical function has CO2 emissions as the most powerful dependent variable, 

with 0.90354. Analyzing the coefficients of the structural canonical correlations, it was observed 

that the Gross Value Added of Industry (0.85548) and Agriculture (0.83996) have greater canonical 

weights (positive relationship) for CO2 emissions in Matopiba.  

The results of the structural canonical correlations in Model 1 indicate that there is a 

canonical relationship between environmental impacts and the economic aggregates of GDP in 

Matopiba, with agricultural GDP being the largest contributor to deforestation and one of the 

largest to the CO2 emissions in the region.  

 
Standardized Canonical 

Coefficients 

Structural Canonical 

Correlations 

Dependent Variables  

(Environmental Impacts) 

1º 2º 1º 2º 

Y1 CO2 Total Emissions - 0.73943 0.75608 - 0.42851 0.90354 

Y2 Deforestation 0.95554 0.45317 0.71493 0.69919 

Independent Variables 

(GDP Economic Aggregates) 

 

X1 Agricultural GDP 0.87158 0.61500 0.54243 0.83996 

X2 Industrial GDP - 1.11867 0.69941 -0.40234 0.85548 

X3 Services and Administration GDP 0.27471 - 0.14035 -0.12641 0.81871 
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These results corroborate the descriptive statistics and current literature on environmental 

problems and economic growth in Matopiba, presented in Chapter 3 of this study (De Oliveira, 

Raposo, & Garcia 2024; Dos Reis et al., 2024; Loayza et. al, 2023; Nunes, Campelo Filho, & 

Benini, 2023; Batista et.al, 2022; De Oliveira, Dörner, & Schneider, 2020; Ribeiro et.al, 2020; 

Widmarck, 2020; De Araújo et.al, 2019; Bragança, 2018; Pereira, Castro, & Porcionato, 2018).  

Matopiba's GDP has registered a growth rate of over 1,400% in recent years, driven mainly 

by agriculture and the goods and services sector. At the same time, the region has lost more than 

12 million hectares of native vegetation and increased CO2 emissions from agriculture by around 

15 million tons. This indicates that this sharp economic growth in the region has come at the 

expense of Cerrado Biome's environmental resources. 

 

4.2.2 CCA Between Environmental Impacts and Agricultural Production 

The four significance tests and the results of the dimensional reduction analysis were also 

statistically significant for Model 2 (significance level = 0.05). With Wilks' λ = 0.14909 (F = 

21.95816; p < 0.01), the null hypothesis that there is no relationship between the two sets of latent 

variables can be rejected.  

The effect size of model 2 was also high, with a proportion of shared variance in the 

canonical functions of 85.09% (0.85091). This indicates that there is a relationship (strong) 

between agricultural production and environmental impacts in Matopiba. 

According to the results of the eigenvalues and squared canonical correlations presented in 

Table 5, two canonical functions will also be interpreted in Model 2. The first canonical function 

explained 92.76% of the variation within its function (Sq. Cor = 0.92768), and the second function 

explained 32.12% (Sq. Cor = 0.32121). 

 

Table 5: Eigenvalues and Canonical Correlations of Model 2 

Roots Eigenvalues Percentage Cumulative 

Percentage 

Canonical 

Correlations 

Squared Canonical 

correlations (Sq. Cor) 

1 12.82682 96.44199 96.44199 0.96316 0.92768 

2 0.47322 3.55801 100 0.56676 0.32121 

Source: Own Elaboration. 
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As shown in Table 6, the first canonical function has CO2 agricultural emissions as the 

strongest dependent variable (0.99078), with the greatest contribution from soybean and corn 

productions (0.65165 and 0.46621, respectively).  

Deforestation was the strongest dependent variable in the second canonical function, 

indicating that soybean (0.78706) and corn (0.75353) productions are also the most responsible 

(among the crops studied) for deforestation in the region. 

 

Table 6: CCA Between Environmental Impacts and Agricultural Production 

Source: Own Elaboration. 

 

The results of the canonical analysis showed that soy is the crop that generates the most 

deforestation and CO2 emissions in Matopiba, closely followed by corn production, in other words, 

soybean and corn production are the main contributors to environmental impacts in the region. 

These results are also consistent with the descriptive analysis presented in Chapter 3. 

At the same time as there has been intense environmental degradation in Matopiba, 

agricultural production has increased by another 24 million tons in recent years, driven mainly by 

soybean and corn cultivation. Today, soy accounts for 50% of total agricultural production and 

occupies 75% of all agricultural land in the region. Many studies place soy as the main agricultural 

crop in the region and one of the most damaging to the environment (Loayza et. al, 2023; Nunes, 

 Standardized Canonical 

Coefficients 

Structural Canonical 

Correlations 

Dependent Variables  

(Environmental Impacts) 

1º 2º 1º 2º 

Y1 CO2 Agricultural Emissions 1.11374 - 0.76397 0.99078 0.13545 

Y2 Deforestation - 0.18294 1.33814 0.56566 0.82464 

Independent Variables 

(Agricultural Production) 

 

X1 Sugar Cane 0.33859 - 0.42799 0.28445 - 0.38664 

X2 Corn 0.08057 0.39142 0.46621 0.75353 

X3 Soybeans 0.55343 0.43643 0.65165 0.78706 

X4 Rice 0.76432 - 0.44181 0.41204 - 0.46357 
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Campelo Filho, & Benini, 2023; Batista et. al, 2022; Lopes, Lima, & Dos Reis, 2021; De Oliveira, 

Dörner, & Schneider, 2020; Santos, 2020; Silva et al, 2020; Spyrides, 2020; Nepstad et al, 2019; 

Bragança, 2018; De Freitas & Buosi, 2018; Carneiro Filho & Costa, 2016). 

Despite a lower production rate than soybeans, corn accounts for 21% of total agricultural 

production and occupies 19% of Matopiba's agricultural area. In addition to the soy-specific 

literature above showing that corn production is increasing and has a major environmental impact 

on the region, other studies also confirm soy and corn as the most polluting crops in Matopiba 

(Araújo et al., 2024; Evangelista & Pereira, 2024; Polizel et al., 2021; Almeida de Souza et al. 

2020; Pires, 2020; Widmarck, 2020; Buzato et al., 2018; Bolfe et al., 2016; Borghi et al., 2014). 

 

Summary 

This chapter developed two statistical models to verify the relationship and magnitude of 

dependence between environmental impacts, economic growth, and agricultural production in 

Matopiba. To do this, machine learning techniques such as Canonical Correlation Analysis (CCA) 

were used. 

Model 1 provided empirical support to prove that there is a relationship between economic 

aggregates and environmental impacts in the Matopiba region, with agricultural GDP having the 

highest canonical correlation with deforestation and one of the highest with CO2 emissions in the 

region. 

With the main objective of analyzing which crops are less sustainable in Matopiba, Model 

2 proved that agricultural production has a relationship with environmental impacts in Matopiba, 

with soybean production being the most polluting in the region, having the highest canonical 

correlation with deforestation and CO2 agricultural emissions, closely followed by corn 

production. This result corroborates with the current literature and the descriptive analyses 

presented in Chapter 3. 
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5. Chapter 5: System Dynamics Modeling applied to predict the future of Matopiba 

 

Introduction 

The descriptive statistics presented in Chapter 3 and the results of the canonical correlation 

analysis presented in Chapter 4 show and prove that agricultural production is the main factor in 

the conversion of native vegetation into pasture and agricultural areas in Matopiba. However, 

Matopiba is at a critical level of natural resource depletion for this agricultural production, with 

only 2.6 million hectares of non-degraded pasture suitable for agriculture (BRASIL, 2021) and an 

area of around 7.5 million hectares of native vegetation with high and medium agricultural 

suitability (Rudorff et al., 2015). 

Thus, this chapter aims to use System Dynamics Modeling (SDM) to predict the future of 

Matopiba regarding available natural resources (land suitable for agriculture and native vegetation) 

and intensive agricultural production. From there, measures will be discussed to try to contain or 

slow down the process of environmental depletion in the region.  

System Dynamics (SD) is a scientific framework that addresses systems based on the 

theory of non-linear dynamics and feedback control. As a methodology, SD is based on quanti-

qualitative techniques, emphasizing stakeholder involvement and encouraging researchers 

themselves to adopt a non-linear mental model approach (Sterman, 2000). A detailed description 

of the methodology and rationale behind SD is presented by Sterman (2000) and Bossel (2007).  

This chapter is structured in two sections. The first section describes System Dynamics 

Modeling, and the entire methodological process involved, such as the SDM application process 

and the results interpretation schedule. Section 2 presents the results of the SDM for Matopiba, in 

which the conceptual development and simulation of the model will be presented and discussed, 

as well as proposing some solutions to the research problem.  

 

5.1 The System Dynamics Modeling Methodology  

 

In summary, System Dynamics Modeling (SDM) focuses on integrating physical 

processes, information flows, and management policies with the dynamics of the variables of 

interest. The totality of these relationships constitutes the “structure” of the system, in which 

“dynamic behaviors” are generated over time. The main objective of the SDM is to understand the 
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creation of the dynamics of interest (how and why) to seek out and propose management policies 

for the situation analyzed (Saysel, Barlas, and Yenigün, 2002).  

SDM is designed to be a robust modeling and analysis of large-scale socio-economic 

systems, based on psychology, economics, and other social sciences to incorporate decision-

making in the face of complex issues. Issues such as environmental management, logistics, 

regional sustainable development, urban economic growth, and ecological modeling use this 

methodology as a way of solving highly complex problems (Kiss and Kiss, 2021).  

Studies on environmental management (Luo, Liu and Zhao, 2023; Prinsloo, Schmitz and 

Lombard, 2023; Francis and Thomas 2022; Hu et al., 2021; Mobaseri, Mousavi and Mousavi 

Haghighi, 2021; Naderi et al., 2021; Prouty, Mohebbi & Zhang, 2020; Liu, Liu & Wang, 2020; 

Tan et al., 2018; Abdelkafi & Täuscher, 2016; Dace et al., 2014; Guan et al., 2011; Qi & Chang 

2011; Stave 2010 & 2002; Fong, Matsumoto & Lun 2009; Jifeng, Huapu & Hu, 2008; Leal Neto 

et al., 2006) and Agricultural Production (Esteso et al., 2023; Shamsuddoha, Nasir and Hossain, 

2023; Wang et al., 2022; Aboah et al., 2021; Muflikh, Smith and Aziz, 2021; Taghikhah et al., 

2021; Fernandez-Mena et al., 2020; Bastan et al., 2018; Rich, Rich and Dizyee, 2018; Jeong and 

Adamowski, 2016; Kotir et al., 2016; Von Loeper et al., 2016; Walters et al., 2016; Dace et al., 

2015; Yu et al., 2013; Li, Dong and Li, 2012; Shen et al., 2009; Shi and Gill, 2005; Saysel, Barlas 

and Yenigün, 2002) also used the SDM methodology. 

The SDM is built with the relevant help of simulation tools/software such as Vensim, Stella, 

and AnyLogic, among others. As it is one of the most advanced tools for dynamics simulation 

methodologies, this chapter uses AnyLogic13 8.8 for the SDM for the Matopiba region. 

 

SDM Application Process and Results Interpretation Schedule 

With some similarity to other modeling approaches, the SDM application process consists 

of developing the model concept and developing the simulation model (Figure 6). This application 

process will be the schedule for interpreting the results of this study.  

 

 

 

 

 
13 AnyLogic: Simulation Modeling Software Tools & Solutions for Business 

https://www.anylogic.com/
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Figure 6: The Process of the System Dynamics Modeling Building 

 
Source: Own Elaboration, based on Banks et al. (2013). 

 

The development of the model concept has the following stages: (1) definition of the 

problem and justification for the model; (2) description of the system components; (3) definition 

of the verbal simulation model; (4) creation of the model's Impact Diagram; and (5) qualitative 

analysis of the impact structure.  

The first stage of the model concept describes and summarizes the problem and 

justification for the study model, using the available literature and relevant data on the subject as 

a reference. The second stage aims to describe the components of the system, conceptualizing the 

main agents of interest that make up the model. The third stage involves defining the verbal 

simulation model, i.e. defining the possible direct relationships between the agents in the model, 

considering that each influence relationship is examined separately, with the others remaining 

unchanged (ceteris paribus). These relationships between the agents will lead to the creation of the 

influence or impact diagram (step 4), in which the directions between the variables studied will be 

presented. Stage 5 brings the qualitative analysis of the impact structure, i.e. the structure and 

validity of the model's application are discussed. 
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For the development of the simulation model, five other stages are articulated: (1) 

development of the dimensional and functional analysis of the model; (2) creation of the 

Simulation Diagram; (3) analysis of the system's behavior (modeling tests); (4) presentation of the 

results of the System Dynamics Modeling; and (5) suggestions for problem-solving. 

In Stage 1 of the simulation model, dimensional analysis, functional relationships, 

quantification, the basic elements of the model (program instructions), and the computable model 

are developed. Later, the Simulation Diagram is built in Stage 2, focusing on analyzing the 

structure of the model, as well as its validity (development of sub-models, stock flow, feedback, 

relationships between elements), i.e. this structure must correspond to the original structure of the 

system and the objectives of the study model. The third stage is the analysis of the dynamic 

system's behavior, in which the execution parameters, initial and final values, and trajectory curves 

in the model's phase space are observed, as well as the empirical validity, sensitivity, and behavior 

(mainly oscillation) of the SDM. Step 4 consists of presenting the SDM results using the graphical 

options offered by the modeling framework program (trajectory curve diagram, for example), as 

well as discussing how the SDM results contributed to achieving the research objectives. Finally, 

in Step 5, the main suggestions for solving the study problem are presented and discussed. 

 

5.2 Development of the SDM Concept for Matopiba 

 

The development of the model concept is preliminary to the simulation and starts with a 

careful analysis of the problem, the justification, and the objectives to be met by the model. This 

stage also presents the components of the dynamic system being studied, the verbal simulation 

model, the Impact Diagram, and the qualitative analysis of the model's structure. 

 

Definition of the Problem and Justification for the Model 

Data from Brazil's main research institutes, presented in Chapter 3 of this study, show that 

approximately 12 million hectares of native vegetation have been lost between 2000 and 2022 in 

Matopiba, with farming accounting for 99.5% of this conversion. 

Farming grew by 158% between 2000 and 2021, mainly due to the increase in pasture areas 

and soybean and corn production in the region. Consequently, the annual demand for land is also 

increasing, with more than 475,000 hectares of new land needed annually for farming in Matopiba, 
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where approximately 203,000 hectares are required for agriculture, 184,000 for pastures, 79,000 

for mosaic areas and 12,100 hectares on average per year for forest plantations.  

However, the Solidaridad Brasil study (Brasil, 2021) showed that Matopiba has only 6.6 

million hectares of pasture suitable for agriculture, of which 4 million hectares are degraded 

pasture. In addition, the relative area of native vegetation with high and medium agricultural 

suitability and no slope restriction is around 7.5 million hectares (Rudorff et al., 2015). Therefore, 

the major challenge facing Matopiba's agricultural frontier today is to balance intensive 

agricultural production with the environment, in other words, to maintain production using the 

minimum area of native vegetation. 

The following questions then arise: how long will the available natural resources (suitable 

land and native vegetation) support intensive agricultural production in Matopiba? What measures 

can be taken to try to contain or slow down the process of environmental depletion in the region? 

To answer these questions, the main objective of this chapter is to develop system dynamics 

modeling to predict the future of Brazil's newest agricultural frontier (Matopiba). To do this, we 

will look at the “lifetime” of the region's environmental resources without any action being taken 

to intensive agricultural production and, from there, propose (appropriate) solutions to this 

problem.   

The justification for the SDM is based on the importance of environmental and agricultural 

production of Matopiba for the world, while at the same time serving as a base model for other 

studies that address the environmental impacts of agricultural frontiers, especially in emerging 

countries. 

 

Description of the System Components 

The SDM for Matopiba consists of two Stocks: Native Vegetation Availability and Virgin 

Land Demand Availability. These subsystems are the main components of the model and have their 

values defined by input and output Flows. These two stocks were chosen due to the data and 

analyses presented in Chapters 3 and 4 of this dissertation, which show the direct relationship 

between agricultural production, increased demand for land, and environmental impacts (mainly 

deforestation of native vegetation). 

Stocks are state variables that change their value continuously over time and define a static 

part of the system. Flows, on the other hand, define how stock values change over time and are 
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linked to the rest of the model through intermediate elements such as Dynamic Variables and 

Parameters. Figure 7 shows the format of the System Dynamic components displayed in Anylogic. 

Dynamic Variables are usually functions of constants and stocks that represent a state of 

the model and can assign themselves the result of a calculation or operation. This model has 24 

dynamic variables, 21 of which are used to analyze the demand for farming land in Matopiba, 1 

variable represents agricultural deforestation, 1 to analyze the impact of land demand on 

agricultural deforestation, and 1 dynamic variable to analyze other impacts on agricultural 

deforestation. 

 

Figure 7: The format of the components of System Dynamics 

 

Source: Anylogic. 

 

The Parameters represent some characteristics of the modeled object statically, i.e. it is a 

constant in a single simulation and is changed only when it is necessary to adjust the model's 

behavior. There are 23 parameters in the SDM for Matopiba, 20 of which are used as constants in 

the analysis of farming land demand, 1 represents the (constant) change in the forest plantation 

area, 1 constant to measure the impact of land demand on agricultural deforestation, and 1 

parameter to represent non-agricultural deforestation. 

It should be noted that soybeans and corn were the only crops used to construct parameters 

and dynamic variables for the demand for agricultural land since these are the most polluting and 

influential crops on Matopiba's agricultural frontier (discussed in Chapter 3 and presented in Table 

6 of Chapter 4). 
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The relationship between the variables that make up the model will be discussed in the 

following section: "Definition of the Verbal Simulation Model". 

 

Definition of the Verbal Simulation Model 

The relationships formed from SDM for Matopiba are as follows: 

• Native Vegetation Availability is reduced by Agricultural Deforestation. 

• Native Vegetation Availability is reduced by Non-Agricultural Deforestation. 

• Agricultural Deforestation is driven by Farming Land Demand. 

• Agricultural Deforestation is driven by Other Agricultural Factors. 

• Virgin Land Availability is driven by Agricultural Deforestation. 

• Virgin Land Availability is reduced by Farming Land Demand. 

• Farming Land Demand is driven by Agricultural Land Demand. 

• Farming Land Demand is driven by Pasture Land Demand. 

• Farming Land Demand is driven by Mosaic Land Demand. 

• Farming Land Demand is driven by Forest Plantation Land Demand. 

• Agricultural Land Demand is driven by GDP. 

• Pasture Land Demand is driven by GDP. 

• Mosaic Land Demand is driven by GDP. 

• GDP is driven by Agricultural Land Demand. 

• GDP is driven by Pasture Land Demand. 

• GDP is stimulated by Mosaic Land Demand.  

 

Creation of the Model's Impact Diagram 

As the basis of the simulation model, Figure 8 shows the Impact Diagram of the variables 

that make up the SDM for Matopiba. 
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Figure 8: The Impact Diagram of the SDM for Matopiba 

 

Source: Own Elaboration. 

 

Qualitative Analysis of the Impact Structure 

As seen in the SDM Impact Diagram for Matopiba (Figure 8), the region's native vegetation 

is reduced by agricultural deforestation which, in turn, increases the area of land used mainly for 

agriculture. The use of land for agriculture leads to economic growth in the region (represented 

here by GDP) and this economic growth increasingly encourages demand for land, resulting in 

agricultural deforestation and, consequently, the reduction of native vegetation.  

This is the agricultural-environmental cycle that has been taking place in Matopiba in 

recent years. As discussed in Chapters 3 and 4, recent literature and official Brazilian government 

data show that the creation of Matopiba's agricultural frontier has led to high economic growth in 

the region, but this has come at the expense of Cerrado's native vegetation. 

This Impact Diagram is the basis for Matopiba's SDM, which will analyze the agricultural 

and, above all, environmental future of the region if there is no intervention. 
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5.3 Results of the System Dynamics Modeling for the Matopiba Region 
 

The simulation model provides the computable part of the SDM for Matopiba, in which 

the main results of the structural and dimensional analysis of the model will be presented, as well 

as the empirical validity, sensitivity, and behavior of the variables. From there, suggestions will be 

made for the study's problems, as well as the model's limitations. 

 

Development of the dimensional and functional analysis of the model 

As described in the "Description of the System Components" section, SDM for Matopiba 

has 2 stocks, 24 dynamic variables, and 23 parameters. Therefore, this section aims to describe 

each of these elements, presenting their initial values or the corresponding functions that were used 

in the simulation process.  

Table 7 summarizes the initial values or functions that make up the stocks and parameters. 

The references for these values were the available literature, as well as official data from the 

Brazilian government for the year 2020. To estimate some internal parameters (fraction), Bivariate 

Regression Analyses were carried out. The results of these analyses, as well as compliance with 

the assumptions, are presented in Appendix D of this dissertation. 

The “NativeVegetationAvailability” stock represents the area of native vegetation with 

high and medium agricultural suitability which, according to (Rudorff et al., 2015), was 

approximately 7.5 million hectares. A statistical estimate was used to arrive at the value of 7.16 

million hectares for 2020 (the initial value of this stock in thousands of hectares). 

The initial value of the “VirginLandAvailability” stock is 2.6 million hectares. The 

reference for this value was the study developed by Solidaridad Brasil (Brasil, 2021), which 

showed that Matopiba has only 2.6 million hectares of undegraded pasture suitable for agriculture. 

The value of the external parameter “NonAgriculturalDeforestation” is 26.78 thousand 

hectares and represents the average non-agricultural deforestation in Matopiba over the last three 

years of the analysis (2018-2020). 

The “OtherAgriImpactsRate” parameter represents the factors external to farming land 

demand that can impact agricultural deforestation in the region. To arrive at this value, a weighted 

average was made between the impact of farming land demand on agricultural deforestation and 

the real value of this deforestation, i.e. this parameter indicates the value of agricultural 

deforestation not stimulated by farming land demand.  
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Table 7: Initial Values of Model Elements (stocks and parameters) 

 Initial 

Value 

Unit of 

Measurement 

Source 

Stocks    

NativeVegetationAvailability 7167.25 Thousand Hectares MAPBiomas, Brazil. 

VirginLandAvailability 2630.38 Thousand Hectares MAPBiomas, Brazil. 

External System Parameters 

(Constants) 

   

NonAgriculturalDeforestation 26.78 Thousand Hectares MAPBiomas, Brazil. 

OtherAgriImpactsRate 132.00 Thousand Hectares MAPBiomas, Brazil. 

ForestPlantationChange 14.51 Thousand Hectares MAPBiomas, Brazil. 

Internal System Parameters    

LandDemandToAgriDeforestationRatio 0.815 Fraction Own parameter estimation14. 

CornLandToGDPRatio 152.738 Fraction Own parameter estimation.  

SoyLandToGDPRatio 30.968 Fraction Own parameter estimation. 

PastureLandToGDPRatio 22.284 Fraction Own parameter estimation.  

MosaicLandToGDPRatio 57.565 Fraction Own parameter estimation.  

GDPToCornLandRatio 0.00637 Fraction Own parameter estimation.  

GDPToSoyLandRatio 0.03237 Fraction Own parameter estimation.  

GDPToPastureLandRatio 0.04491 Fraction Own parameter estimation.  

GDPToMosaicLandRatio 0.01528 Fraction Own parameter estimation.  

CornLandIncreaseByGDP_Init 20.89 Thousand Hectares MAPBiomas, Brazil. 

SoyLandIncreaseByGDP_Init 196.25 Thousand Hectares MAPBiomas, Brazil. 

PastureLandIncreaseByGDP_Init 245.19 Thousand Hectares MAPBiomas, Brazil. 

MosaicLandIncreaseByGDP_Init 3.11 Thousand Hectares MAPBiomas, Brazil. 

Source: Own Elaboration. 

 
14 To estimate the “own parameters”, databases provided by MAPBiomas, Brazil and IBGE, Brazil were used. 
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The value of the “ForestPlantationChange” parameter represents the average land demand 

(increase or decrease in area from one year to the next) of Forest Plantations in the Matopiba region 

in the last few years of the analysis. 

Moving on to describe the internal parameters, “LandDemandToAgriDeforestationRatio” 

represents the impact of farming land demand on agricultural deforestation in Matopiba. A 

bivariate regression analysis was carried out to verify the relationship between these two variables. 

Bivariate regression analysis was also used to see the relationship between land demand 

for corn, soybean, pasture, and mosaic and GDP (“CornLandToGDPRatio”, 

“SoyLandToGDPRatio”, “PastureLandToGDPRatio”, ‘MosaicLandToGDPRatio’), as well as the 

relationship between GDP and the demand for land for these crops (GDPToCornLandRatio, 

‘GDPToSoyLandRatio’, ‘GDPToPastureLandRatio’, “GDPToMosaicLandRatio").  

The parameters “CornLandIncreaseByGDP_Init”, “SoyLandIncreaseByGDP_Init”, 

“PastureLandIncreaseByGDP_Init” and “MosaicLandIncreaseByGDP_Init” represent, 

respectively, the annual land demand for corn, soy, pasture, and mosaic used in the model. This 

was done by adding the real average demand for land in recent years with the impact of GDP on 

demand (GDPToLandRatio) and with the impact of land demand on GDP (LandToGDPRatio) 

afterward. 

Dynamic variables, as already defined, are usually functions of stocks and constants used 

to store the results of the model simulation, i.e. they do not have initial “values”, but functions. 

The variable "AgriculturalDeforestation", for example, represents agricultural 

deforestation in the region. To create it, two other dynamic variables were used that represent the 

impact of farming land demand and other external agricultural impacts on agricultural 

deforestation. Thus: 

 

"AgriculturalDeforestation" = "ImpactLandDemandOnAgriDeforestation" + "OtherImpactsOnAgriDeforestation" 

 

The variable "ImpactLandDemandOnAgriDeforestation" is formed by the relationship 

between the demand for land for farming and agricultural degradation in Matopiba, that is: 

 

"ImpactLandDemandOnAgriDeforestation" = "FarmingLandDemand" * "LandDemandToAgriDeforestationRatio" 
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"FarmingLandDemand" is the combination of the land demand for forest plantation, 

mosaic areas, pasture, and agriculture. 

 

"FarmingLandDemand" = 

"ForestPlantationLandDemand" + "MosaicLandDemand" + "PastureLandDemand" + "AgriculturalLandDemand" 

 

The variable "ForestPlantationLandDemand" corresponds to the parameter 

"ForestPlantationChange", which represents a fixed value that represents the increase in demand 

for forest plantations from one year to the next. 

 

"ForestPlantationLandDemand" = "ForestPlantationChange" 

 

“MosaicLandDemand” corresponds to another dynamic variable “MosaicLandChange”, 

which represents the increase in demand for mosaic land from one year to the next. To create 

“MosaicLandChange”, the initial demand for land for mosaic areas due to GDP (constant) was 

added to the increase in demand for land caused by the impact of GDP and other factors in year 

+1. Thus: 

 

“MosaicLandChange” = time()<=1? MosaicLandIncreaseByGDP_Init:(“MosaicLandIncreaseByGDP”+ 

MosaicLandIncrease_Others_Init) 

 

The increase in demand for mosaic areas stimulated by GDP is measured by multiplying 

the change in GDP in the region from year to year and its impact on mosaic demand, i.e.:  

 

“MosaicLandIncreaseByGDP” = ‘GDPChange’ * GDPToMosaicLandRatio 

 

This change in GDP is achieved by adding the increase in GDP from mosaic land and other 

factors: 

 

“GDPChange” = ‘GDPIncreaseByMosaicLand’ + GDPIncrease_Others_Init 
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Finally, the increase in GDP from mosaic land is the result of multiplying the increase in 

demand for mosaic land from one year to the next (-1) and its impact on GDP: 

 

“GDPIncreaseByMosaicLand” = delay(”MosaicLandChange”,1) * MosaicLandToGDPRatio 

 

This same process was done for the "PastureLandDemand" variable. Like this:  

 

"PastureLandDemand" = ""PastureLandChange"  

 

"PastureLandChange" = time()<=1? PastureLandIncreaseByGDP_Init:("PastureLandIncreaseByGDP"+ 

PastureLandIncrease_Others_Init)  

 

"PastureLandIncreaseByGDP" = "GDPChange" * GDPToPastureLandRatio  

 

"GDPChange" = "GDPIncreaseByPastureLand" + GDPIncrease_Others_Init  

 

"GDPIncreaseByPastureLand" = delay("PastureLandChange",1) * PastureLandToGDPRatio 

 

The variable "AgricultralLandDemand" corresponds to the sum of two other dynamic 

variables "CornLandChange" and "SoyLandChange". From there, the same process was applied 

to both variables.  

For "CornLandChange" we have: 

 

"CornLandChange" = time()<=1? CornLandIncreaseByGDP_Init:("CornLandIncreaseByGDP"+ 

CornLandIncrease_Others_Init) 

 

"CornLandIncreaseByGDP" = "GDPChange" * GDPToCornLandRatio 

 

"GDPChange" = "GDPIncreaseByCornLand" + GDPIncrease_Others_Init 

 

"GDPIncreaseByCornLand" = delay("CornLandChange",1) * CornLandToGDPRatio 
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For the dynamic variable "SoyLandChange" we have: 

 

"SoyLandChange" = time()<=1? SoyLandIncreaseByGDP_Init:("SoyLandIncreaseByGDP"+ 

SoyLandIncrease_Others_Init) 

 

"SoyLandIncreaseByGDP" = "GDPChange" * GDPToSoyLandRatio 

 

"GDPChange" = "GDPIncreaseBySoyLand" + GDPIncrease_Others_Init 

 

"GDPIncreaseBySoyLand" = delay("SoyLandChange",1) * SoyLandToGDPRatio 

 

Creation of the SDM Simulation Diagrams 

Figure 9 shows the structure of the SDM for the Matopiba region. This structure shows the 

development of sub-models, stock flow, dynamic variables, parameters, and the connections 

between the SDM components.
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Figure 9: Structure of the SDM for Matopiba 

 

Source: Own Elaboration, based on AnyLogic output.
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For a more detailed analysis of the SDM, the discussion of the elements will be divided 

into three subsystems: Native Vegetation Availability, Virgin Land Availability, and Farming Land 

Demand, illustrated respectively in Figures 10, 11, and 12. 

Stock 1 (Native Vegetation Availability) is made up of two outputs: the impact of Non-

Agricultural Deforestation and the impact of Agricultural Deforestation, as illustrated in Figure 

10.  

 

Figure 10: Structure of the Native Vegetation Availability Subsystem 

 

Source: Own Elaboration, based on AnyLogic output. 

 

The Dynamic Variable “AgriculturalDeforestation” is affected by Farming Land Demand 

and by Other Factors that can affect agricultural deforestation (such as government policies, 

legislation, etc.), which directly impacts the Native Vegetation Availability (Stock 1) and the Virgin 

Land Availability (Stock 2). 

As illustrated in Figure 11, Stock 2 (Virgin Land Availability) is made up of one input 

(impact of Agricultural Deforestation) and one output (Farming Land Demand). In other words, 

Stocks 1 and 2 are directly linked to the impact of Agricultural Deforestation. 

  



71 
 

Figure 11: Structure of the Virgin Land Availability Subsystem 

 

Source: Own Elaboration, based on AnyLogic output. 

 

Figure 12 shows that the dynamic variable “FarmingLandDemand” is affected by four 

other dynamic variables: Forest Plantation Land Demand, Mosaic Land Demand, Pasture Land 

Demand, and Agricultural Land Demand.  

In this analysis, “ForestPlantationLandDemand” has a fixed value, i.e. it is not affected 

positively or negatively. This is because the land area and demand for forest plantations remained 

almost constant compared to the other agricultural land covers during the study period (these data 

are presented in Chapter 3 of this study). 

In turn, 'MosaicLandDemand', 'PastureLandDemand', and 'AgriculturalLandDemand' have 

a cyclical relationship with GDP. This means that an increase in GDP affects these land demand 

variables and, at a certain point, the increase in land demand will also affect GDP, and so on. 

The variable “AgriculturalLandDemand” is further subdivided into two other dynamic 

variables: ‘CornLandChange’ and ‘SoyLandChange’. These two crops were chosen because, as 

presented in Chapters 3 and 4, soybean and corn production are the largest and most land-intensive 

in the region.
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Figure 12: Structure of the Farming Land Demand Subsystem 

 

Source: Own Elaboration, based on AnyLogic output. 
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Analysis of the system's behavior (modeling tests) 

The SDM simulation was run from 2020 until the exhaustion of the main source of natural 

resources available for agricultural production in Matopiba (Native Vegetation Availability). 

However, before analyzing these values, it is necessary to discuss the model's calibration and 

validation process, as well as the system's behavior. 

 

Calibration Process: 

To verify that the parameters used in the SDM simulation are reliable, the calibration 

process was initially carried out, which consisted of simulating the SDM until 2020 (the year the 

SDM simulation for Matopiba began) and verifying that the results correspond to the real data. In 

the calibration process, the analysis was carried out from 2001 to 2011. 

In this process, the average difference between the model's simulated values and the real 

values of the main elements that make up the SDM (Native Vegetation Availability, Virgin Land 

Demand Availability, Farming Land Demand, and Agricultural Deforestation) was observed. The 

difference between the average values of these elements and the actual values is expected to be a 

maximum of 2%. 

Table 8 shows the average difference between the actual and simulated values from the 

calibration process. As shown in Table 8, the average difference between the real values and the 

simulated values in the calibration process was between -2% and 0%, thus demonstrating the 

strong reliability of the parameters that make up the SDM.  
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Table 8: Average difference between real and simulated values (SDM Calibration) 

 

Year 

Native Vegetation  

Availability 

Virgin Land Demand  

Availability 

Farming Land 

Demand 

Agricultural 

Deforestation 

Diff Diff % Diff Diff % Diff Diff % Diff Diff % 

2001 631.28 -1% 117.50 -4% -162.69 34% -44.50 9% 

2002 677.80 -1% 82.31 -3% -61.05 13% -95.93 20% 

2003 703.65 -1% -184.06 7% 222.98 -50% -43.09 9% 

2004 510.25 -1% -149.94 5% 134.04 -31% 168.46 -36% 

2005 396.76 -1% -57.28 2% 3.99 -1% 96.93 -21% 

2006 370.66 -1% 50.48 -2% -89.87 21% 18.19 -4% 

2007 415.99 -1% 83.09 -3% -71.16 17% -38.27 8% 

2008 386.47 -1% 200.33 -7% -94.21 23% 23.31 -5% 

2009 414.29 -1% 221.35 -8% -54.45 14% -33.16 8% 

2010 429.51 -1% 274.18 -9% -57.17 15% -4.08 1% 

2011 448.48 -1% 17.87 -1% 229.57 -60% -26.48 6% 

Average -1% -2% 0% 0% 

Source: Own Elaboration. 

 

Validation Process: 

The validation process, like the calibration process, consists of simulating the SDM until 

2020 and verifying whether the results correspond to the real data. However, in the validation 

process, the analysis was carried out from 2001 to 2020. 

Table 9 shows the average difference between real and simulated values in the validation 

process.  
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Table 9: Average difference between real and simulated values (SDM Validation) 

 

Year 

Native Vegetation  

Availability 

Virgin Land Demand  

Availability 

Farming Land 

Demand 

Agricultural 

Deforestation 

Diff Diff % Diff Diff % Diff Diff % Diff Diff % 

2001 
631.28 -1% 117.50 -4% 

-193.40 38% 
-87.71 16% 

2002 
677.80 -1% 82.31 -3% 

-107.00 21% 
-150.87 28% 

2003 
703.65 -1% -184.06 7% 

166.85 -33% 
-105.84 19% 

2004 
510.25 -1% -149.94 5% 

70.23 -14% 
99.82 -18% 

2005 
396.76 -1% -57.28 2% 

-66.28 13% 
23.36 -4% 

2006 
370.66 -1% 50.48 -2% 

-165.95 34% 
-59.84 11% 

2007 
415.99 -1% 83.09 -3% 

-152.72 31% 
-120.49 23% 

2008 
386.47 -1% 200.33 -7% 

-181.03 37% 
-62.94 12% 

2009 
414.29 -1% 221.35 -8% 

-146.37 30% 
-123.33 23% 

2010 
429.51 -1% 274.18 -9% 

-154.06 32% 
-98.08 19% 

2011 
116.40 0% -252.04 8% 

127.82 -26% 
-124.22 24% 

2012 
-31.62 0% -315.14 9% 

205.90 -42% 
142.80 -27% 

2013 
-260.68 1% -105.06 3% 

-22.54 5% 
187.54 -36% 

2014 
-290.82 1% -75.02 2% 

-18.69 4% 
11.34 -2% 

2015 
-300.54 1% 30.48 -1% 

-117.07 24% 
-11.57 2% 

2016 
-196.20 0% 62.90 -2% 

-141.84 29% 
-109.42 21% 

2017 
-90.09 0% 92.29 -3% 

-138.01 29% 
-108.62 21% 

2018 
-29.45 0% 59.82 -2% 

-47.80 10% 
-80.27 15% 

2019 
-57.72 0% -12.41 0% 

83.34 -17% 
11.11 -2% 

2020 
-125.32 0% 29.21 -1% 

48.06 -10% 
89.68 -17% 

Average 0% 1% 0% 0% 

Source: Own Elaboration.  
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As its name suggests, the validation process aims to “validate” the parameters and initial 

values of the elements that make up the SDM. Once validated, these values will be used as the 

basis for the (future) simulation of the SDM for Matopiba.  

As shown in Table 9, the average difference between the model's simulated values and the 

actual values of the main elements that make up the model (Availability of Native Vegetation, 

Availability of Virgin Land Demand, Agricultural Land Demand, and Agricultural Deforestation) 

in the validation process were between 0% and 1%, thus demonstrating the strong reliability of the 

SDM data. 

In both processes (calibration and validation) the same initial values were used for the 

elements that make up the SDM, based on the average of the time series (2001 to 2020). However, 

due to a trend observed in the SDM elements from 2011 onwards (more precisely between 2015 

and 2020), the values of some parameters had to be adjusted in the validation process.  

 

System's behavior: 

The behavior of the system shows the trend of the elements that make up the SDM for 

Matopiba from 2020 onwards. This system’s behavior then reflects the continuation of the trend 

observed in the validation process. Figure 13 shows the behavior of the dynamic system for the 

main elements of the SDM in Matopiba15.  

In the coming years (from 2020 onwards), the area of land suitable for farming is expected 

to increase as the region's native vegetation is depleted. This is stimulated by a growing demand 

for farming land and agricultural deforestation. 

The analysis of the values that make up the behavior of the system dynamics will be 

detailed in the next section “Results of the System Dynamics Modeling”. 

 

 
15 Figures illustrating the behavior of the dynamic system for other SDM elements can be found in Appendix B. 
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Figure 13: Dynamic behavior of the main SDM elements 

 

Source: Own Elaboration, based on AnyLogic output. 

 

System Dynamics Modeling Results for Matopiba Region 

The final values of the elements that make up the SDM for Matopiba are shown in Figure 

13. As illustrated in figures 13 and 14, the SDM for Matopiba showed that Native vegetation in 

areas with high and medium agricultural suitability in Matopiba is expected to be exhausted within 

20 years if no environmental intervention or policy is implemented in the region. As the analysis 

was carried out from the year 2020, native vegetation is expected to be extinct by around 2034. 
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Figure 14: SDM Simulation Results for Matopiba 

 

Source: Own Elaboration, based on AnyLogic output.
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As the area of native vegetation is the main source of intensive agricultural production, this 

result confirms the high environmental impact of Matopiba's agricultural frontier, as well as 

showing that producers and the government will have to stimulate innovative measures to try to 

meet the demand for land for this intensive production.  

Driven mainly by the increase in the area coming from agricultural deforestation (which is 

expected to be around 525,000 hectares per year), the data shows that the virgin area suitable for 

agriculture is set to increase within 20 years. In addition, there is also an upward trend in the 

demand for new agricultural land (virgin land demand), which is expected to reach more than 

480,000 hectares per year within 20 years. 

The increase in demand for virgin farming land can be explained by to increased demand 

for pasture and agriculture, as demand for forest plantations and mosaic areas decreases. The 

demand for virgin land for pasture is expected to be approximately 248,000 hectares per year 

within 20 years, 218,000 hectares for agriculture, 14,000 for forest plantations, and just over 500 

hectares of new agricultural land for mosaic areas. 

It was also noted that, in agriculture, the demand for land for soybeans is expected to 

increase, while the demand for land for corn is expected to decrease. The demand for virgin 

farming land for soybeans is expected to increase from 196,000 hectares in 2020 to approximately 

204,000 hectares within 20 years; the demand for new land for corn production, which was 20,000 

hectares in 2020, is expected to be 14,400 hectares. 

These results confirm that there is a high conversion cycle between agricultural areas in 

Matopiba, with pasture and soybean production requiring the largest percentage of new 

agricultural areas in the region in the coming years. Therefore, the innovative measures that will 

be proposed must be based on the demand for land for these two crops. 

 

Suggestions for problem-solving 

The SDM results showed that the area of native vegetation is the main source of intensive 

agricultural production in Matopiba, with pasture and soybean production demanding the most 

new areas. The problem is how to maintain production and the growing demand for agricultural 

land using the minimum area of native vegetation. 

Measures such as tightening environmental tax legislation, environmental regeneration and 

reforestation policies, and the use of sustainable agricultural technologies, among others, could be 
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useful in solving this problem. However, without ruling out the other measures mentioned, this 

study presents the incentive for crop-livestock-forest integration (CLFI) as a viable solution for 

maintaining Matopiba's agricultural frontier and the Cerrado biome at the same time. 

Data from EMBRAPA (Skorupa et al., 2019) confirms that 65% of agricultural expansion 

in Matopiba has been due to the conversion of native forests and 35% to the conversion of pastures 

and other crops. As a result, the expansion of agricultural production is expected to be exhausted 

in native areas in the coming years, causing productive development to occur based on changes in 

the economic uses of the land. In addition, the study by Solidaridad Brasil (Brasil, 2021) states 

that Matopiba has 6.6 million hectares of pastures with agricultural aptitude, of which 4 million 

hectares are degraded pastures. Converting degraded pasture areas into crops through the CLFI 

system is therefore a viable option for expanding sustainable agricultural production in the region. 

Furthermore, crop rotation using the CLFI system in non-degraded pasture areas can also 

be encouraged. The SDM showed that, in addition to the 4 million hectares of degraded pasture, 

the area of virgin pasture suitable for agriculture is expected to reach an area of approximately 3.2 

million hectares within 20 years. This means a pasture area of 7.2 million hectares suitable for 

agricultural production in the region. 

The CLFI system is a way of developing changes in land use through environmental 

preservation and greater agricultural productivity. In short, the CLFI system integrates crops 

(agriculture), pastures (livestock) and forest in the same area and can be applied through crop 

rotation or succession at specific times (Puech & Stark, 2023; Sekaran et al., 2021; Vinholis et al., 

2020; Asai et al., 2018; Ryschawy et al., 2017; Martin et al., 2016; Moraine et al., 2016; Cordeiro 

et al., 2015; Bonaudo et al., 2014; Lemaire et al., 2014; Martha Júnior, Alves & Contini, 2011; 

Balbinot Junior et al., 2009; Vilela et al., 2008; Gonçalves & Franchini, 2007; Alvarenga & Noce, 

2005).  

As well as increasing agricultural production, the CLFI system is more sustainable, as there 

is crop rotation, recovery of degraded areas, and, consequently, a reduction in the deforestation of 

native forests. The CLFI system can then be configured as one of the preventive actions (political 

implications) for the environmental restructuring of the Cerrado Biome and the Matopiba region 

(Leite et al., 2024; Oliveira et al., 2024; Júnior & Figueiredo, 2023; Barbosa et al., 2022; Da Silva 

et al., 2021; Gontijo Neto et al., 2018; Torres, Assis & Loss, 2018; Gil, Garrett & Berger, 2016; 
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Rangel et al., 2016; Costa et al., 2015; De Moraes et al., 2014; Garcia et al., 2013; Balbino et al., 

2011; Silva et al., 2011; Vilela et al., 2011). 

EMBRAPA has been developing the CLFI system in Matopiba since 2005, considering the 

environmental and economic specificities of each state and sub-region. Table 10 presents a 

summary of the main crop combinations in CLFI systems developed by EMBRAPA (Skorupa et 

al., 2019) for Matopiba. 

According to Rangel et al. (2016), the form of integration best suited to Matopiba is 

Agropastoral Integration (API) due to the practice of intensive agriculture. In this system, grain 

production and livestock are rotated in the same area. However, in addition to API, 

Agrosilvopastoral Integration (ASPI), Silvopastoral Integration (SPI) and Agroforestry Integration 

(AFI) are also being developed in the region. In the ASPI system, grains, livestock, and wood 

products are produced in the same area; in the SPI system, livestock and wood products are rotated; 

and in the SFI system, grains and wood products are produced in the same area. 

In addition to presenting the main crop combinations in CLFI systems, the EMBRAPA 

report (Skorupa et al., 2019) analyzed the expansion potential of CLFI systems in Matopiba. 

According to the report, the states of Maranhão and Piauí and the western region of Bahia have 

the potential to expand CLFI in the current grain and livestock-producing areas due to the millions 

of hectares of crops and pastures developed in these regions, as well as the large cattle herd of high 

genetic quality. In Tocantins, on the other hand, the potential for expanding CLFI lies in the 

degraded areas, which, according to the IBGE (2022), already comprise an area of more than 

800,000 hectares. 

Through the research carried out by Skorupa et al. (2019) over ten years with partner farms 

in the Matopiba region, an increase in the economic and productive development of the region was 

observed due to the increased production of corn and soybeans in CLFI systems and the generation 

of employment and income due to crop rotation. In addition, the report shows important results in 

terms of environmental regeneration (mainly of the soil) in Matopiba through the increase in water 

retention capacity in the soils using the CLFI system, as well as a considerable increase in the 

content of organic matter present in the soil. It is therefore believed that the implementation and 

increasing encouragement of the CLFI system represents an alternative for meeting the demand 

for land suitable for agriculture (mainly through the regeneration of degraded soils), as well as for 

more sustainable production in Matopiba. 
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Table 10: Main Crop Combinations in CLFI Systems for Matopiba Region 

CLFI Maranhão (MA), 

Piauí (PI) and Western of Bahia (BA) 
Tocantins (TO) 

Agropastoral 

Integration 

(API) 

In grain-producing areas: soybeans and corn + forage crops in no-till at 

the beginning of the rainy season, followed by corn + forage crops, 

cowpeas, and sorghum in the second harvest, as well as millet and 

forage crops for over-sowing soybeans at the end of the rainy season, 

followed by finishing and fattening cattle on pastures in the off-season. 

In grain-producing areas: soybean + forage plant rotation 

and single pasture during the harvest to support the cattle 

during the summer + finishing and fattening of cattle on 

pastures in the off-season. 

In areas with predominantly pasture: corn or rice + forage grass + 

finishing and fattening cattle on pasture in the off-season. 

In areas with predominantly pasture: corn + forage grass + 

remaining pasture in the off-season. 

Agrosilvopastoral 

Integration 

(ASPI) 

Eucalyptus or other tree species in clumps of up to four rows, 

interspersed with strips of up to 28 meters with soybean + millet crops 

in over-seeding in the first two years and corn + forage in the third 

year, followed by animals from the third to the seventh year or more, if 

the forest component is destined for the sawmill. 

Small areas of forestry crops of eucalyptus, rubber trees, or 

other forest species, use the inter-rows to grow soybeans in 

the first few years until the inter-rows are closed by the 

treetops. 

Silvopastoral 

Integration 

(SPI) 

Eucalyptus or another tree species in clumps of up to two rows 

interspersed with pasture in strips of at least 10 meters. Recovery or 

implementation of the pasture through corn + forage in the first year of 

planting the tree species, followed by animals until the seventh year or 

more, if the forest component is destined for the sawmill. 

Planting of tree species (mainly eucalyptus) + pasture after 

the third year of planting tree seedlings. 

Agroforestry 

Integration 

(AFI) 

Eucalyptus or other tree species in rows of up to four lines interspersed 

with strips of up to 36 meters with soybean and corn crops in direct 

planting at the beginning of the rainy season, followed by cowpea and 

grain sorghum in the off-season after the soybean harvest, and also 

millet and forage crops overseeded on the soybean at the end of the 

rainy season acting as soil cover for the following harvest. 

Eucalyptus or other forest species + management of the 

areas between the fields for other agricultural activities. Up 

until the third year, the areas between the plantations are 

cultivated with soybeans, corn, or rice during the harvest 

season and corn, sorghum, or cowpeas during the off-

season, with the possibility of associating forage plants in a 

consortium to provide soil cover and straw for direct 

sowing of the next harvest's crops. When the trees reach a 

larger size, soybeans or corn are grown during the harvest, 

with animals brought in during the off-season to graze the 

forage plants from the consortium, over-seeding, or sowing 

after the grain harvest. Once the trees have reached their 

maximum height, the area is only used for pasture. 

Source: Own Elaboration, based on Skorupa et al., 2019.
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Summary 

This chapter developed System Dynamic Modeling (SDM) to predict the 

environmental impacts caused by agricultural frontiers in the coming years, with a focus 

on the Matopiba region in Brazil. 

The SDM showed that native vegetation in areas with high and medium 

agricultural suitability in Matopiba is expected to be extinct within 20 years (expected 

around 2034) if current intensive agricultural production continues and no environmental 

intervention is implemented in the region. This will occur due to increased agricultural 

production and, consequently, increased demand for land and agricultural deforestation.  

By way of comparison, if the trend observed in the calibration process is used, it 

is expected that the area of native vegetation will also be reduced within 20 years. 

However, this process would be slower (expected around 2037), as there would be a 

downward trend in agricultural deforestation in Matopiba. In addition, the demand for 

new agricultural land has also shown a downward trend. These trends are the opposite of 

what was observed in the validation process and the main studies discussed here, which 

show a more pronounced upward trend in agricultural deforestation and demand for land 

in Matopiba since 2015. 

This chapter suggested crop-livestock-forest integration (CLFI) as a way of trying 

to contain or slow down this process of environmental depletion in the region, through 

crop rotation (conservation of degraded pasture areas in crops). The CLFI system, which 

integrates crops, pastures, and forests in the same area in a sustainable way, has already 

been developed in Matopiba and has great potential for growth in degraded pasture areas 

in the state of Tocantins, as well as in current agricultural and pasture areas in the states 

of Maranhão, Piauí, and western Bahia.   
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6. Chapter 6: Theses of the Doctoral Dissertation 

 

6.1. Theses   

 

This chapter presents my research theses based on the results of the Systematic 

Literature Review, Canonical Correlation Analyses, and System Dynamics Modeling, 

presented in Chapters 2, 4, and 5, respectively. Although each of the chapters has a 

specific focus, the main objective of this study is to analyze the environmental impacts 

promoted by agricultural frontiers in emerging countries, with a focus on the Matopiba 

region in Brazil, and to contribute to guiding more sustainable agricultural public policies. 

To present my critical and argumentative statement of the theses (T1, ..., Tx), I 

first check and reaffirm the answers to the research questions (RQ1, ..., RQx) and then 

assess whether the hypotheses linked to each research question are accepted or rejected 

(H1, ..., Hx). 

Chapter 2 presented a Systematic Literature Review on agricultural frontiers and 

the environment in emerging countries. As well as being the main theoretical source of 

the dissertation, this chapter provided answers to Research Questions 1 and 2: 

 

RQ1. Is the Matopiba region in Brazil a hot topic in the global literature on agricultural 

frontiers and the environment in emerging countries? 

RQ1.1. Are some emerging countries/regions more prominent in studies on 

agricultural frontiers and the environment? 

 

To find out whether the Matopiba region in Brazil is an important topic in the 

global literature on agricultural frontiers and the environment in emerging countries, the 

analyses presented in subchapters 2.2 (Geographical distribution and main terms of 

studies) and 2.3 (Main studies by country/region) were checked. Subchapter 2.2 showed 

that most studies on the agricultural frontier and the environment in emerging countries 

are concentrated in Brazil. However, this focus is especially (almost exclusively) on the 

Amazon rainforest (Subchapter 2.3). Subchapter 2.3 also showed that research on the 

Cerrado Biome and the Matopiba Region is still at a regional level, in which there are few 

studies written in English and with a high impact factor (inclusion and exclusion criteria 

for this study). 

Thus, based on the results presented in Subchapters 2.2 and 2.3, Hypothesis 1 of 

this study is accepted, and Thesis 1 of this dissertation is formed:  
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THESIS 1 

The literature on agricultural frontiers and the environment in emerging countries 

has focused mainly on Brazil's Amazon rainforest. Despite the growing number of 

studies on Brazil's Matopiba, this region has not yet been given as much prominence 

in the world literature on agricultural frontiers and the environment, since most of 

this research is concentrated among Brazilian researchers and is written in 

Portuguese. 

 

To answer how we can systematize the literature on agricultural frontiers and the 

environment in emerging countries (RQ2), I initially checked whether there are 

similarities between these studies amidst the great diversity that exists between emerging 

countries (RQ2.1). 

 

RQ2. How can we systematize literature on agricultural frontiers and the environment in 

emerging countries? 

RQ2.1. Are there any similarities between research on agricultural frontiers and the 

environment in emerging countries? 

 

In subchapters 2.3 and 2.4 (The Connections between Agricultural Frontiers and 

the Environment) of the Systematic Literature Review, it was observed that research in 

emerging countries has two main focuses: measuring the effects of intensive agriculture 

on remaining natural resources and analyzing and/or proposing more sustainable 

agricultural public policies and technologies. With this finding, Hypothesis 2 of this study 

is accepted, and Thesis 2 of this dissertation is formed: 

 

THESIS 2 

Despite the enormous diversity between emerging countries, the literature on 

agricultural frontiers and the environment in these countries is similar, as it 

essentially seeks to measure the environmental impacts caused by intensive 

agriculture, as well as analyze agricultural technologies and public policies. Thus, 

these two research focuses are currently the best way to systematize the literature 

on agricultural frontiers and the environment in emerging countries. 
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Using machine learning techniques, Chapter 4 analyzed the environmental 

conditions generated by Matopiba's agricultural frontier. This empirical study provided 

answers to Research Questions 3 and 4: 

 

RQ3. Is there any relationship between the economic aggregates and the environmental 

impacts generated on Matopiba's agricultural frontier? 

RQ3.1. Which economic aggregate contributes the most to environmental impacts in 

the Matopiba region? 

 

To answer whether there is any relationship between the economic aggregates and 

the environmental impacts generated by the Matopiba agricultural frontier, subchapter 

4.2.1 was checked. Subchapter 4.2.1 brought the results of the canonical correlation 

analysis between the economic variables (GDP aggregates) and the environmental 

variables (deforestation, CO2 emissions). The analysis showed that there is a strong 

relationship between economic aggregates and environmental impacts in Matopiba, with 

agricultural GDP contributing the most to environmental degradation. 

Based on these results, Hypothesis 3 of this study is accepted, and Thesis 3 of 

this dissertation is formed: 

 

THESIS 3 

There is a relationship between economic aggregates of GDP and environmental 

impacts in the Matopiba region of Brazil, with the agricultural sector having a 

positive and the highest correlation with deforestation and one of the highest 

magnitudes with CO2 emissions in the region. 

 

Subchapter 4.2.2 provided an analysis of the canonical correlation between the 

production of Matopiba's main crops (soybeans, corn, sugarcane, rice, etc.) and the 

variables that represent environmental impacts, thus providing answers to Research 

Question 4: 

 

RQ4. Is agricultural production in Matopiba related to the environmental impacts 

generated in the region? 

RQ4.1. Which crops contribute most to environmental impacts in Matopiba's 

agricultural frontier? 
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The analysis presented in Subchapter 4.2.2 showed that there is a strong 

relationship between agricultural production and environmental impacts in the Matopiba 

region, with soybean and corn production contributing the most to these impacts. Thus, 

Hypothesis 4 of this study is accepted, and Thesis 4 of this dissertation is formed: 

 

THESIS 4 

Agricultural production has a relationship with environmental impacts in the 

Matopiba region of Brazil, with soybean and corn production consecutively being 

the biggest contributors to deforestation and agricultural CO2 emissions in the 

region. 

 

Chapter 5 used System Dynamics Modeling (SDM) to predict the future of the 

Matopiba Region regarding available natural resources and intensive agricultural 

production. This empirical study provided the answer to Research Question 5: 

 

RQ5: How soon will the native vegetation be exhausted in the agriculturally suitable areas 

of Matopiba?  

 

Subchapter 5.2.2 (Development of the SDM Simulation for Matopiba) showed 

that the area of native vegetation with high and medium agricultural suitability is expected 

to be extinct within 20 years in Matopiba if no environmental intervention or policy is 

implemented in the region. This will occur due to intense agricultural production and 

increased demand for land. Based on these results, Hypothesis 5 of this study is accepted, 

and Thesis 5 of this dissertation is formed: 

 

THESIS 5 

Native vegetation in areas with high and medium agricultural suitability in 

Matopiba is expected to be extinct within 20 years if current intensive agricultural 

production continues and no environmental intervention is implemented in the 

region. As the SDM analysis was carried out from the year 2020, native vegetation 

is expected to be extinct by around 2034. This extinction of native vegetation is 

associated with intensive agricultural production and increased demand for 

agricultural land in the region. 
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6.2 New and Novel Results 
 

This dissertation has brought new and innovative results to the literature on 

agricultural frontiers and the environment in emerging countries, as well as in the 

Matopiba region in Brazil.  

Firstly, the Systematic Literature Review showed that there is a certain similarity 

in the studies on agricultural frontiers and the environment in emerging countries, in 

which the authors essentially sought to measure the environmental impacts caused by 

intensive agriculture and evaluate public policies and the use of agricultural technologies. 

In addition, the SRL showed that there are still few studies on the agricultural frontier of 

Matopiba written in English, thus opening up an important gap to be filled in the literature 

on emerging countries. 

Secondly, using Canonical Correlation Analyses, it was possible to verify which 

of the GDP aggregates and which of the main crops produced in Matopiba are directly 

correlated with CO2 emission rates and the deforestation of native vegetation in the 

region. As well as being a pioneer in the use of Machine Learning technologies, the results 

of the CCA help to develop more sustainable public policies.  

Through System Dynamics Modeling, it was observed that native vegetation in 

areas with high and medium agricultural suitability in Matopiba is expected to be extinct 

within 20 years, mainly due to intensive soybean production and the increased demand 

for agricultural land for pasture areas, as well as for soybean production. These results 

make a relevant contribution to the implementation of environmental actions in Matopiba, 

as they show the fields that should be prioritized and worked on to promote more 

sustainable agricultural production. 

In addition to all the new results presented, this study is a pioneer in the use of a 

Systematic Literature Review to analyze the literature on the environment and 

agricultural frontiers in emerging countries; it is a pioneer in the use of Machine Learning 

techniques to analyze environmental and economic variables (together) for Matopiba; as 

well as a pioneer in the formulation of a System Dynamics Modeling on agricultural 

production and environmental impacts for the Brazilian Cerrado. 

 

6.3. Study Limitations and Future Research 
 

 It should be noted that this study has some limitations. Firstly, the Systematic 

Literature Review used inclusion and exclusion criteria which, even following the 
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guidelines of the literature, are subjective and, once used, can obscure important studies. 

In addition, the key terms used for the analysis may also have obscured some emerging 

countries or regions. Therefore, a suggestion for future research is, in addition to updating 

the period of analysis, to include emerging countries or regions that were not used in the 

study. 

Secondly, for the Canonical Correlation Analysis, only the proxies for 

deforestation of native vegetation and CO2 emissions were used as environmental 

variables. The initial idea was to use a variable that represented the reduction of drinking 

water in the region, believing that this inclusion would bring an important debate to 

Matopiba's agricultural frontier. However, no database was found that represented the 

reduction of drinking water. Therefore, an important suggestion is to include this variable 

in the analysis. 

It was noted by System Dynamics Modeling that there is a tendency for 

agricultural deforestation to be greater than the demand for land in Matopiba in the 

coming years. Moved to try and discuss this issue, and I came across a report by the 

Climate Observatory (2023) which explains that the SAD Cerrado alert detection system 

has been incorporated operationally, which provides more accurate data on deforestation 

in the Cerrado (Matopiba). The report also provides the relevant information that 

deforestation in Matopiba is spreading to Legal Reserves and Permanent Protection 

Areas, areas that could not even be touched. From these two pieces of information, it can 

be deduced that the deforestation surplus in Matopiba is due to improved detection 

systems in the region compared to other data, as well as the fact that the data on demand 

for agricultural land does not include Legal Reserves and Permanent Protection Areas in 

the Cerrado. As this is only an assumption, it opens up a gap for future research. 

Through the SDM it was also seen the dynamic connections between the 

environmental and economic components of Matopiba, as well as the “duration” of each 

of these components. However, the model did not include variables representing solutions 

to the problem presented. Despite mentioning that the CLFI system is one of the 

preventive actions (political implications) for the environmental restructuring of 

Matopiba and the Cerrado Biome, there was no simulation to verify the effect of this 

action. I, therefore, suggest including the CLFI system, or another relevant preventive 

action, in System Dynamics Modeling for Matopiba. 
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Appendix A 

 

List of the municipalities and geographic microregions of Matopiba 

 

Table A1: List of the municipalities and geographic microregions of Matopiba 
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Table A1: List of the municipalities and geographic microregions of Matopiba 

State Microregion Number of 

Microregion 

Municipality Number of 

Municipality 

MA 

Maranhão 

Lençóis 

Maranhenses 

1 Barreirinhas 1 

Humberto de Campos 2 

Paulino Neves 3 

Primeira Cruz 4 

Santo Amaro do Maranhão 5 

Tutóia 6 

Itapecuru 

Mirim 

2 Cantanhede 7 

Itapecuru-Mirim 8 

Matões do Norte 9 

Miranda do Norte 10 

Nina Rodrigues 11 

Pirapemas 12 

Presidente Vargas 13 

Vargem Grande 14 

Imperatriz 3 Açailândia 15 

Amarante do Maranhão 16 

Buritirana 17 

Cidelândia 18 

Davinópolis 19 

Governador Edison Lobão 20 

Imperatriz 21 

Itinga do Maranhão 22 

João Lisboa 23 

Lajeado Novo 24 

Montes Altos 25 

Ribamar Fiquene 26 

São Francisco do Brejão 27 

São Pedro da Água Branca 28 

Senador La Rocque 29 

Vila Nova dos Martírios 30 

Médio 

Mearim 

4 Bacabal 31 

Bernardo do Mearim 32 

Bom Lugar 33 

Esperantinópolis 34 

Igarapé Grande 35 

Lago do Junco 36 

Lago dos Rodrigues 37 

Lago Verde 38 

Lima Campos 39 
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Olho d'Água das Cunhãs 40 

Pedreiras 41 

Pio XII 42 

Poção de Pedras 43 

Santo Antônio dos Lopes 44 

São Luís Gonzaga do Maranhão 45 

São Mateus do Maranhão 46 

São Raimundo do Doca Bezerra 47 

São Roberto 48 

Satubinha 49 

Trizidela do Vale 50 

Alto Mearim 

e Grajaú 

5 Arame 51 

Barra do Corda 52 

Fernando Falcão 53 

Formosa da Serra Negra 54 

Grajaú 55 

Itaipava do Grajaú 56 

Jenipapo dos Vieiras 57 

Joselândia 58 

Santa Filomena do Maranhão 59 

Sítio Novo 60 

Tuntum 61 

Presidente 

Dutra 

6 Fortuna 62 

Dom Pedro 63 

Gonçalves Dias 64 

Governador Archer 65 

Governador Eugênio Barros 66 

Governador Luiz Rocha 67 

Graça Aranha 68 

Presidente Dutra 69 

São Domingos do Maranhão 70 

São José dos Basílios 71 

Senador Alexandre Costa 72 

Baixo 

Parnaíba 

Maranhense 

7 Água Doce do Maranhão 73 

Araioses 74 

Magalhães de Almeida 75 

Santa Quitéria do Maranhão 76 

Santana do Maranhão 77 

São Bernardo 78 

Chapadinha 8 Anapurus 79 

Belágua 80 

Brejo 81 

Buriti 82 
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Chapadinha 83 

Mata Roma 84 

Milagres do Maranhão 85 

São Benedito do Rio Preto 86 

Urbano Santos 87 

Codó 9 Alto Alegre do Maranhão 88 

Capinzal do Norte 89 

Codó 90 

Coroatá 91 

Peritoró 92 

Timbiras 93 

Coelho Neto 10 Afonso Cunha 94 

Aldeias Altas 95 

Coelho Neto 96 

Duque Bacelar 97 

Caxias 11 Buriti Bravo 98 

Caxias 99 

Matões 100 

Parnarama 101 

São João do Soter 102 

Timon 103 

Chapadas do 

Alto Itapecuru 

12 Barão de Grajaú 104 

Colinas 105 

Jatobá 106 

Lagoa do Mato 107 

Mirador 108 

Nova Iorque 109 

Paraibano 110 

Passagem Franca 111 

Pastos Bons 112 

São Francisco do Maranhão 113 

São João dos Patos 114 

Sucupira do Norte 115 

Sucupira do Riachão 116 

Porto Franco 13 Campestre do Maranhão 117 

Carolina 118 

Estreito 119 

Porto Franco 120 

São João do Paraíso 121 

São Pedro dos Crentes 122 

Gerais de 

Balsas 

14 Alto Parnaíba 123 

Balsas 124 

Feira Nova do Maranhão 125 
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Riachão 126 

Tasso Fragoso 127 

Chapadas das 

Mangabeiras 

15 Benedito Leite 128 

Fortaleza dos Nogueiras 129 

Loreto 130 

Nova Colinas 131 

Sambaíba 132 

São Domingos do Azeitão 133 

São Félix de Balsas 134 

São Raimundo das Mangabeiras 135 

TO 

Tocantins 

Bico do 

Papagaio 

16 Aguiarnópolis 136 

Ananás 137 

Angico 138 

Araguatins 139 

Augustinópolis 140 

Axixá do Tocantins 141 

Buriti do Tocantins 142 

Cachoeirinha 143 

Carrasco Bonito 144 

Darcinópolis 145 

Esperantina 146 

Itaguatins 147 

Luzinópolis 148 

Maurilândia do Tocantins 149 

Nazaré 150 

Palmeiras do Tocantins 151 

Praia Norte 152 

Riachinho 153 

Sampaio 154 

Santa Terezinha do Tocantins 155 

São Bento do Tocantins 156 

São Miguel do Tocantins 157 

São Sebastião do Tocantins 158 

Sítio Novo do Tocantins 159 

Tocantinópolis 160 

Araguaína 17 Aragominas 161 

Araguaína 162 

Araguanã 163 

Arapoema 164 

Babaçulândia 165 

Bandeirantes do Tocantins 166 

Carmolândia 167 

Colinas do Tocantins 168 



110 
 

Filadélfia 169 

Muricilândia 170 

Nova Olinda 171 

Palmeirante 172 

Pau-d'Arco 173 

Piraquê 174 

Santa Fé do Araguaia 175 

Wanderlândia 176 

Xambioá 177 

Miracema do 

Tocantins 

18 Abreulândia 178 

Araguacema 179 

Barrolândia 180 

Bernardo Sayão 181 

Brasilândia do Tocantins 182 

Caseara 183 

Colméia 184 

Couto de Magalhães 185 

Divinópolis do Tocantins 186 

Dois Irmãos do Tocantins 187 

Fortaleza do Tabocão 188 

Goianorte 189 

Guaraí 190 

Itaporã do Tocantins 191 

Juarina 192 

Marianópolis do Tocantins 193 

Miracema do Tocantins 194 

Miranorte 195 

Monte Santo do Tocantins 196 

Pequizeiro 197 

Presidente Kennedy 198 

Rio dos Bois 199 

Tupirama 200 

Tupiratins 201 

Rio Formoso 19 Araguaçu 202 

Chapada de Areia 203 

Cristalândia 204 

Dueré 205 

Fátima 206 

Formoso do Araguaia 207 

Lagoa da Confusão 208 

Nova Rosalândia 209 

Oliveira de Fátima 210 

Paraíso do Tocantins 211 
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Pium 212 

Pugmil 213 

Sandolândia 214 

Gurupi 20 Aliança do Tocantins 215 

Alvorada 216 

Brejinho de Nazaré 217 

Cariri do Tocantins 218 

Crixás do Tocantins 219 

Figueirópolis 220 

Gurupi 221 

Jaú do Tocantins 222 

Palmeirópolis 223 

Peixe 224 

Santa Rita do Tocantins 225 

São Salvador do Tocantins 226 

Sucupira 227 

Talismã 228 

Porto 

Nacional 

21 Aparecida do Rio Negro 229 

Bom Jesus do Tocantins 230 

Ipueiras 231 

Lajeado 232 

Monte do Carmo 233 

Palmas 234 

Pedro Afonso 235 

Porto Nacional 236 

Santa Maria do Tocantins 237 

Silvanópolis 238 

Tocantínia 239 

Jalapão 22 Barra do Ouro 240 

Campos Lindos 241 

Centenário 242 

Goiatins 243 

Itacajá 244 

Itapiratins 245 

Lagoa do Tocantins 246 

Lizarda 247 

Mateiros 248 

Novo Acordo 249 

Ponte Alta do Tocantins 250 

Recursolândia 251 

Rio Sono 252 

Santa Tereza do Tocantins 253 

São Félix do Tocantins 254 
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Dianópolis 23 Almas 255 

Arraias 256 

Aurora do Tocantins 257 

Chapada da Natividade 258 

Combinado 259 

Conceição do Tocantins 260 

Dianópolis 261 

Lavandeira 262 

Natividade 263 

Novo Alegre 264 

Novo Jardim 265 

Paranã 266 

Pindorama do Tocantins 267 

Ponte Alta do Bom Jesus 268 

Porto Alegre do Tocantins 269 

Rio da Conceição 270 

Santa Rosa do Tocantins 271 

São Valério 272 

Taguatinga 273 

Taipas do Tocantins 274 

PI 

Piauí 

Alto Parnaíba 

Piauiense 

24 Baixa Grande do Ribeiro 275 

Ribeiro Gonçalves 276 

Santa Filomena 277 

Uruçuí 278 

Bertolínia 25 Antônio Almeida 279 

Bertolínia 280 

Colônia do Gurgueia 281 

Eliseu Martins 282 

Landri Sales 283 

Manoel Emídio 284 

Marcos Parente 285 

Porto Alegre do Piauí 286 

Sebastião Leal 287 

Alto Médio 

Gurgueia 

26 Alvorada do Gurgueia 288 

Barreiras do Piauí 289 

Bom Jesus 290 

Cristino Castro 291 

Currais 292 

Gilbués 293 

Monte Alegre do Piauí 294 

Palmeira do Piauí 295 

Redenção do Gurgueia 296 

Santa Luz 297 
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São Gonçalo do Gurgueia 298 

Chapadas do 

Extremo Sul 

Piauiense 

27 Avelino Lopes 299 

Corrente 300 

Cristalândia do Piauí 301 

Curimatá 302 

Júlio Borges 303 

Morro Cabeça no Tempo 304 

Parnaguá 305 

Riacho Frio 306 

Sebastião Barros 307 

BA 

Bahia 

Barreiras 28 Baianópolis 308 

Barreiras 309 

Catolândia 310 

Formosa do Rio Preto 311 

Luís Eduardo Magalhães 312 

Riachão das Neves 313 

São Desidério 314 

Cotegipe 29 Angical 315 

Brejolândia 316 

Cotegipe 317 

Cristópolis 318 

Mansidão 319 

Santa Rita de Cássia 320 

Tabocas do Brejo Velho 321 

Wanderley 322 

Santa Maria 

da Vitória 

30 Canápolis 323 

Cocos 324 

Coribe 325 

Correntina 326 

Jaborandi 327 

Santa Maria da Vitória 328 

Santana 329 

São Félix do Coribe 330 

Serra Dourada 331 

Bom Jesus da 

Lapa 

31 Bom Jesus da Lapa 332 

Carinhanha 333 

Feira da Mata 334 

Paratinga 335 

Serra do Ramalho 336 

Sítio do Mato 337 

Source: Own Elaboration, based on IBGE.  
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Appendix B 

 

Figures of the Dynamic Behavior of SDM Elements 

 

Figure B1: Dynamic behavior of the Farming Land Demand elements (SDM) 

Figure B2: Dynamic behavior of the main elements of Agriculture Land Demand 

(SDM) 

Figure B3: Dynamic behavior of the main elements of Pasture Land Demand (SDM) 

Figure B4: Dynamic behavior of the main elements of Mosaic Land Demand (SDM) 

Figure B5: Dynamic behavior of the main elements of Deforestation (SDM) 
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Figure B1: Dynamic behavior of the Farming Land Demand elements (SDM) 

 

Source: Own Elaboration, based on AnyLogic output. 
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Figure B2: Dynamic behavior of the main elements of Agriculture Land Demand 

(SDM) 

 

Source: Own Elaboration, based on AnyLogic output. 
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Figure B3: Dynamic behavior of the main elements of Pasture Land Demand 

(SDM) 

 

Source: Own Elaboration, based on AnyLogic output. 

 

 

Figure B4: Dynamic behavior of the main elements of Mosaic Land Demand 

(SDM) 

 

Source: Own Elaboration, based on AnyLogic output. 
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Figure B5: Dynamic behavior of the main elements of Deforestation (SDM) 

 

Source: Own Elaboration, based on AnyLogic output. 
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Appendix C 

 

Verification of Assumptions of Canonical Correlation Analysis (CCA) 

 

Linearity 

Normality 

Multicollinearity 
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1. Linearity: 

The scatter plot was used to check the linearity between the variables. When observing 

the dispersion of the data points, it is expected that they are close to the trend line, as this 

means that the values of the two variables are similar and consistent. 

 

Model 1: 

 
Source: SPSS output. 

 

 

 
Source: SPSS output.  
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Source: SPSS output. 

 

 

 

 
Source: SPSS output. 
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Source: SPSS output. 

 

 

 

 
Source: SPSS output. 
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Model 2: 

 

 
Source: SPSS output. 

 

 

 

 
Source: SPSS output. 
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Source: SPSS output. 

 

 

 

Source: SPSS output. 
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Source: SPSS output. 

 

 

 

 
Source: SPSS output. 
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Source: SPSS output. 

 

 

 

 

 
Source: SPSS output. 
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2. Normality: 

The normality assumption for models 1 and 2 was met by the Central Limit Theory 

(Ellenberg, 2015; Salsburg, 2009). According to this theory, the distribution of sample 

means can be satisfactorily approximated by a normal distribution when the sample size 

is greater than 30. In this study, there was a sample of 31 microregions. 

 

3. Multicollinearity: 

The absence of multicollinearity will be analyzed using the value of the Variance Inflation 

Factor (VIF). A VIF between 5 and 10 indicates a high correlation, which can be 

problematic. Furthermore, if the VIF is above 10, it is assumed that the regression 

coefficients are poorly estimated due to multicollinearity. The VIF value is therefore 

expected to be less than 5. 

 

Table C2: Variance Inflation Factor (VIF) results – CCA analysis 

Model Independent Variables Tolerance VIF 

 

Model 1 

Agricultural GDP 0.613 1.631 

Industry GDP 0.297 3.366 

Services GDP 0.232 4.308 

 

 

Model 2 

Corn Production 0.377 2.654 

Soybean Production 0.377 2.637 

Sugarcane Production 0.989 1.011 

Rice Production 0.988 1.012 

Source: Own Elaboration, based on SPSS output. 
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Appendix D  

 

Bivariate Regression Analysis (SDM) 

 

➢ Results 

➢ Verification of Assumptions 

 



129 
 

Results 

 

To estimate the internal parameters “LandDemandToAgriDeforestationRatio”, 

“CornLandToGDPRatio”, “SoyLandToGDPRatio”, “PastureLandToGDPRatio”, 

“MosaicLandToGDPRatio”, “GDPToCornLandRatio”, ‘GDPToSoyLandRatio’, 

‘GDPToPastureLandRatio’, and ‘GDPToMosaicLandRatio’ of the SDM for Matopiba, 

bivariate regression analyses were carried out. 

The analysis used annual data from 2000 to 2020 (n = 21) for most of the 

parameters, except for the parameters that used data from the mosaic and pasture areas. 

For these, an analysis was carried out from 2011 to 2020 (n = 10) due to the availability 

and consistency of the database. 

The results of the parameter coefficients are shown in Table D1. The coefficient 

values are raw, i.e. they are the values found from the analysis of the bivariate regression 

analyses before the SDM calibration and validation process. 

 

Table D1: Bivariate Regression Analysis Results 

Parameter Coefficient Std. Err. P > |T| R2 

LandDemandToAgriDeforestationRatio 0.7504548    0.0504411 0.00 0.9209 

CornLandToGDPRatio 152.4438 8.893755 0.00 0.9393 

SoyLandToGDPRatio 30.86192 1.361294 0.00 0.9644 

PastureLandToGDPRatio 38.23967 8.661106 0.00 0.7885 

MosaicLandToGDPRatio 49.9381 27.8559 0.00 0.4664 

GDPToCornLandRatio 0.006161 0.000359 0.00 0.9393 

GDPToSoyLandRatio 0.031247 0.001378 0.00 0.9644 

GDPToPastureLandRatio 0.027822 0.003489 0.00 0.7885 

GDPToMosaicLandRatio 0.009825 0.003220 0.00 0.4664 

Source: Own Elaboration, based on STATA output. 
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Assumptions 

 

As these are bivariate regression analyses, the models must meet the assumptions 

that the variables have a normal distribution (normality), that the variance of the errors is 

constant (homoscedasticity), and that the errors of one period are not correlated with the 

errors of previous periods (no serial autocorrelation). 

 

1. Normality: 

The normality assumption for the variables of the models was checked and met by Test 

Shapiro-Francia W’. The variables are expected to have a P-value > 0.05. 

 

Table D2: Shapiro-Francia Test Results – Bivariate Regression Analyses 

Variables W’ V’ Sig 

Farming land demand   0.90226       2.206      0.05826 

Deforestation 0.89249 2.472 0.05273 

Corn land demand 0.90124 2.315 0.05572 

Soybeans land demand 0.92649 2.002 0.10646 

Mosaic Area 0.96318 1.002 0.49823 

Pasture Area 0.94417 1.520 0.22605 

GDP 0.93694 1.717 0.16592 

Source: Own Elaboration, based on STATA output. 

 

2. Homoscedasticity: 

Breusch-Pagan / Cook-Weisberg test was used to check the homogeneity of the variance 

errors. The models are expected to have a P-value > 0.05. As seen in Table D3, the 

homoscedasticity assumption was met. 
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Table D3: Breusch-Pagan Test Results – Bivariate Regression Analyses 

Parameter Breusch-Pagan Statistics Sig 

LandDemandToAgriDeforestationRatio 0.41 0.5227 

CornLandToGDPRatio 3.49 0.0542 

SoyLandToGDPRatio 3.88 0.0491 

PastureLandToGDPRatio 0.85 0.3570 

MosaicLandToGDPRatio 0.97 0.3249 

GDPToCornLandRatio 2.84 0.0918 

GDPToSoyLandRatio 3.51 0.0497 

GDPToPastureLandRatio 0.45 0.5026 

GDPToMosaicLandRatio 0.17 0.6807 

Source: Own Elaboration, based on STATA output. 

 

3. No Serial Correlation: 

Durbin's alternative test was used to check the serial autocorrelation. The models are 

expected to have no serial autocorrelation (P-value > 0.05). As seen in Table D4, this 

assumption was met in all models. 

 

Table D4: Durbin's Test Results – Bivariate Regression Analyses 

Parameter Durbin's Statistics Sig 

LandDemandToAgriDeforestationRatio 3.541 0.0599 

CornLandToGDPRatio 0.032 0.8585 

SoyLandToGDPRatio 3.595 0.0526 

PastureLandToGDPRatio 1.902 0.1678 

MosaicLandToGDPRatio 4.109 0.0495 

GDPToCornLandRatio 0.009 0.9253 

GDPToSoyLandRatio 4.101 0.0499 

GDPToPastureLandRatio 1.157   0.2820 

GDPToMosaicLandRatio 3.567 0.0589 

Source: Own Elaboration, based on STATA output. 

 


